Singular Value Decomposition (SVD)

Compute the Singular Value Decomposition of a matrix $A$. The SVD factorizes any matrix into orthogonal and diagonal components.
Matrix entries can be real numbers or fractions.

For an $m \times n$ matrix $A$, the SVD is a factorization:

$$ A = U\Sigma V^T $$

Components:

  • $U$ is an $m \times m$ orthogonal matrix (left singular vectors)
  • $\Sigma$ is an $m \times n$ diagonal matrix (singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq 0$)
  • $V^T$ is an $n \times n$ orthogonal matrix (right singular vectors)

Key Properties:

  • Singular values are the square roots of eigenvalues of $A^TA$ (or $AA^T$)
  • The rank of $A$ equals the number of non-zero singular values
  • SVD works for any matrix (square or rectangular)
Rows $m$: Columns $n$:
SVD Type:
© 2025 Shelvean Kapita: kapita@tamu.edu
Last modified: August 11, 2025
Licensed under the MIT License.