Matrix Multiplication Calculator

Compute the matrix product $C = AB$ for real or complex matrices.
Supports fractions, decimals, and mathematical expressions.

For matrices $A$ (size $m \times p$) and $B$ (size $p \times n$), the product $C = AB$ is defined as:

$ C_{ij} = \sum_{k=1}^{p} A_{ik}B_{kj} $

Key Properties:

  • Compatibility: Number of columns in $A$ must equal number of rows in $B$
  • Result size: If $A$ is $m \times p$ and $B$ is $p \times n$, then $AB$ is $m \times n$
  • Non-commutative: Generally $AB \neq BA$
  • Associative: $(AB)C = A(BC)$
  • Distributive: $A(B + C) = AB + AC$

Applications:

  • Composing linear transformations
  • Solving systems of equations
  • Graph theory (adjacency matrices)
  • Quantum mechanics (operator composition)
Rows of $A$ Columns of $A$ / Rows of $B$ Columns of $B$
Display Values as:
© 2025 Shelvean Kapita: kapita@tamu.edu
Last modified: November 25, 2025