Phase Line Diagram for Autonomous Differential Equations

About
This tool plots phase lines for autonomous ODEs \( y' = f(y) \).

Equilibrium points are found by scanning the interval for sign changes in \( f(y) \), then refining each root using the bisection method. This is a robust technique that reliably locates all roots even for non-smooth or piecewise-defined functions.
y' = f(y) = -y*sin(y)
Enter ODE \( y' = f(y) \)
\( y' =\)

Supported Functions

sqrt(y)$$ \sqrt{y} $$
cbrt(y)$$ \sqrt[3]{y} $$
abs(y)$$ |y| $$
sin(y)$$ \sin y $$
cos(y)$$ \cos y $$
tan(y)$$ \tan y $$
asin(y)$$ \arcsin y $$
acos(y)$$ \arccos y $$
atan(y)$$ \arctan y $$
sinh(y)$$ \sinh y $$
cosh(y)$$ \cosh y $$
tanh(y)$$ \tanh y $$
exp(y)$$ e^{y} $$
log(y)$$ \ln y $$
log10(y)$$ \log_{10} y $$
pi$$ \pi $$
e$$ e $$
ceil(y)$$ \lceil y \rceil $$
floor(y)$$ \lfloor y \rfloor $$
round(y)$$ \mathrm{round}(y) $$
max(a,b)$$ \max(a,b) $$
min(a,b)$$ \min(a,b) $$
Linear Phase Portraits
Nonlinear Phase Portraits