Interactive Newton-Raphson Method Visualizer: Explore root-finding convergence through automated demonstrations and detailed iteration analysis.
Quadratic convergence for simple roots (\(m=1\)). For roots with multiplicity \(m > 1\), linear convergence.
For roots with multiplicity \(m > 1\). Restores quadratic convergence for multiple roots.
Linear: \(e_{n+1}/e_n \to \text{constant}\)
Quadratic: \(e_{n+1}/e_n^2 \to \text{constant}\)
Precision: 100-digit calculations
| n | \( x_n \) | \( f(x_n) \) | \( f'(x_n) \) | Error \( e_n \) | \( e_{n+1}/e_n \) | \( e_{n+1}/e_n^2 \) |
|---|
© 2025 Shelvean Kapita: kapita@tamu.edu
All code released under the MIT License.
Last modified: December 16, 2025 | High-precision calculations using Decimal.js