The Newton-Raphson Method Visualizer

Interactive Newton-Raphson Method Visualizer: Explore root-finding convergence through automated demonstrations and detailed iteration analysis.

Select Function

\[ f(x) = x^3 - 2x + 2 \]
✓ Convergence achieved! Absolute error ≤ 1e-13

Quick Demos

Parameters

Short Long
0.5 s
Current Status
Iteration: 0
Current Error: 1.00e+0
Function Value: -

📈 Newton's Method

\[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]

Quadratic convergence for simple roots (\(m=1\)). For roots with multiplicity \(m > 1\), linear convergence.

Modified Newton's Method

\[ x_{n+1} = x_n - m \cdot \frac{f(x_n)}{f'(x_n)} \]

For roots with multiplicity \(m > 1\). Restores quadratic convergence for multiple roots.

🔍 Convergence Analysis

Linear: \(e_{n+1}/e_n \to \text{constant}\)

Quadratic: \(e_{n+1}/e_n^2 \to \text{constant}\)

Precision: 100-digit calculations

Iteration Details

Current iteration highlighted in green
n \( x_n \) \( f(x_n) \) \( f'(x_n) \) Error \( e_n \) \( e_{n+1}/e_n \) \( e_{n+1}/e_n^2 \)
Showing all iterations. Scroll down to see more.

© 2025 Shelvean Kapita: kapita@tamu.edu

All code released under the MIT License.

Last modified: December 16, 2025 | High-precision calculations using Decimal.js