Compute the least squares solution $\mathbf{x} = A^{\dagger}\mathbf{b}$ using the Moore-Penrose pseudoinverse.
Most robust method for rank-deficient and ill-conditioned matrices.
The SVD-based method uses the pseudoinverse to solve least squares problems:
$ \mathbf{x} = A^{\dagger}\mathbf{b} $
How it works:
Compute SVD: $A = U\Sigma V^T$, then form the pseudoinverse:
$ A^{\dagger} = V\Sigma^{\dagger}U^T $
where $\Sigma^{\dagger}$ inverts nonzero singular values and transposes.
Advantages: