Find the best approximate solution to $A \mathbf{x} \approx \mathbf{b}$ using the Normal Equations.
Solves $A^TA\mathbf{x} = A^T\mathbf{b}$ to minimize $\| A \mathbf{x} - \mathbf{b} \|_2$.
The Normal Equations provide a direct method for solving least squares problems:
$ A^TA\mathbf{x} = A^T\mathbf{b} $
Derivation:
Minimizing $\| A\mathbf{x} - \mathbf{b} \|_2^2$ requires the gradient to be zero:
$ \nabla_{\mathbf{x}} \| A\mathbf{x} - \mathbf{b} \|^2 = 2A^T(A\mathbf{x} - \mathbf{b}) = \mathbf{0} $
Key Points: