Enter square matrix dimensions, generate input matrix $A$, fill values, and calculate inverse using augmented matrix $[A | I]$.
Matrix entries can be real or complex, e.g. 3+2i, -1/2-i, 0.2i, etc.
(Matrix must be square)
For a square matrix $A$, the inverse $A^{-1}$ satisfies:
$ A \cdot A^{-1} = A^{-1} \cdot A = I $
Existence:
Computing via Gauss-Jordan:
Form the augmented matrix $[A | I]$ and row-reduce to $[I | A^{-1}]$
Properties: