Moore-Penrose Pseudoinverse Calculator

Compute the generalized inverse (Moore-Penrose pseudoinverse) $A^{\dagger}$ using SVD.
Works for any matrix: square, rectangular, singular, or non-singular.

The Moore-Penrose pseudoinverse $A^{\dagger}$ generalizes the matrix inverse:

  • If $A$ is square and invertible: $A^{\dagger} = A^{-1}$
  • If $A$ has full column rank: $A^{\dagger} = (A^TA)^{-1}A^T$ (left inverse)
  • If $A$ has full row rank: $A^{\dagger} = A^T(AA^T)^{-1}$ (right inverse)
  • For any matrix: computed via SVD as $A^{\dagger} = V\Sigma^{\dagger}U^T$

Applications:

  • Solving least squares problems: $\min \|Ax - b\|$
  • Finding minimum norm solutions to $Ax = b$
  • Computing best-fit approximations
Rows $(m)$: Columns $(n)$:
Display as:
© 2025 Shelvean Kapita: kapita@tamu.edu
All code released under the MIT License.
Last modified: May 28, 2025