Find Bases for the Four Fundamental Subspaces of a Matrix

Enter matrix dimensions below, generate the input matrix, fill in the values or generate a random integer matrix, and then calculate the bases for the column space, nullspace, row space, and left nullspace of the matrix $A$.

For an $m \times n$ matrix $A$:

Rank-Nullity Theorem:

$$ \text{rank}(A) + \text{nullity}(A) = n \quad \text{(number of columns)} $$

This states that the dimension of the column space plus the dimension of the nullspace equals the number of columns.

Row Rank = Column Rank:

$$ \text{rank}(A) = \text{rank}(A^T) $$

The dimension of the column space $C(A)$ equals the dimension of the row space $C(A^T)$.

Orthogonal Complements:

$$ C(A) \oplus N(A^T) = \mathbb{R}^m \quad \text{and} \quad C(A^T) \oplus N(A) = \mathbb{R}^n $$

The column space and left nullspace are orthogonal complements in $\mathbb{R}^m$. The row space and nullspace are orthogonal complements in $\mathbb{R}^n$.

Display Values as:
© 2025 Shelvean Kapita: kapita@tamu.edu
All code released under the MIT License.
Last modified: October 24, 2025