Determinant and Trace Calculator
Compute the determinant and trace of a square matrix.
Two fundamental scalar quantities that characterize square matrices.
Determinant:
- Denoted $\det(A)$ or $|A|$
- Measures the "volume scaling factor" of the linear transformation
- $\det(A) = 0$ if and only if $A$ is singular (non-invertible)
- For eigenvalues $\lambda_1, \ldots, \lambda_n$: $\det(A) = \lambda_1 \cdots \lambda_n$
Trace:
- Denoted $\text{tr}(A)$
- Sum of diagonal entries: $\text{tr}(A) = a_{11} + a_{22} + \cdots + a_{nn}$
- For eigenvalues $\lambda_1, \ldots, \lambda_n$: $\text{tr}(A) = \lambda_1 + \cdots + \lambda_n$
Display Values as:
© 2025 Shelvean Kapita: kapita@tamu.edu
All code released under the MIT License.
Last modified: August 1, 2025