Determinant and Trace Calculator

Compute the determinant and trace of a square matrix.
Two fundamental scalar quantities that characterize square matrices.

Determinant:

  • Denoted $\det(A)$ or $|A|$
  • Measures the "volume scaling factor" of the linear transformation
  • $\det(A) = 0$ if and only if $A$ is singular (non-invertible)
  • For eigenvalues $\lambda_1, \ldots, \lambda_n$: $\det(A) = \lambda_1 \cdots \lambda_n$

Trace:

  • Denoted $\text{tr}(A)$
  • Sum of diagonal entries: $\text{tr}(A) = a_{11} + a_{22} + \cdots + a_{nn}$
  • For eigenvalues $\lambda_1, \ldots, \lambda_n$: $\text{tr}(A) = \lambda_1 + \cdots + \lambda_n$
Matrix size $n$:
Display Values as:
© 2025 Shelvean Kapita: kapita@tamu.edu
All code released under the MIT License.
Last modified: August 1, 2025