The Column-Row (CR) factorization expresses a matrix as:
$ A = CR $
where:
- $C$ is an $m \times r$ matrix containing the linearly independent columns of $A$
- $R$ is an $r \times n$ matrix containing the nonzero rows of RREF$(A)$
- $r = \text{rank}(A)$
How it works:
- Compute RREF$(A)$ to identify pivot columns
- $C$ = columns of $A$ corresponding to pivot positions
- $R$ = nonzero rows of RREF$(A)$
Applications:
- Reveals the rank and basis for column space
- Efficient storage for low-rank matrices
- Understanding matrix structure and dependencies