Column-Row (CR) Factorization

Factor a matrix as $A = CR$ using its column and row spaces.
$C$ contains independent columns of $A$, $R$ contains rows of RREF$(A)$.

The Column-Row (CR) factorization expresses a matrix as:

$ A = CR $

where:

  • $C$ is an $m \times r$ matrix containing the linearly independent columns of $A$
  • $R$ is an $r \times n$ matrix containing the nonzero rows of RREF$(A)$
  • $r = \text{rank}(A)$

How it works:

  1. Compute RREF$(A)$ to identify pivot columns
  2. $C$ = columns of $A$ corresponding to pivot positions
  3. $R$ = nonzero rows of RREF$(A)$

Applications:

  • Reveals the rank and basis for column space
  • Efficient storage for low-rank matrices
  • Understanding matrix structure and dependencies
Display Values as:
© 2025 Shelvean Kapita: kapita@tamu.edu
All code released under the MIT License.
Last modified: September 8, 2025