Cholesky Decomposition

Factor a symmetric positive definite matrix as $A = LL^T$.
Efficient method for solving linear systems and optimization problems.

The Cholesky decomposition factors a symmetric positive definite matrix $A$ as:

$ A = LL^T $

where $L$ is a lower triangular matrix with positive diagonal entries.

Requirements:

  • $A$ must be symmetric: $A = A^T$
  • $A$ must be positive definite: $\mathbf{x}^TA\mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$

Applications:

  • Solving linear systems: $A\mathbf{x} = \mathbf{b}$ becomes $L(L^T\mathbf{x}) = \mathbf{b}$
  • Computing determinants: $\det(A) = (\prod L_{ii})^2$
  • Generating correlated random variables
  • Numerical optimization (Newton's method)
Size $n$:
Output Form:
© 2025 Shelvean Kapita: kapita@tamu.edu
All code released under the MIT License.
Last modified: July 29, 2025