Given two bases $\mathcal{B} = \{v_1, \ldots, v_n\}$ and $\mathcal{C} = \{u_1, \ldots, u_n\}$ for $\mathbb{R}^n$, this calculator computes the change of coordinates matrix $\mathbf{S}$ that converts coordinates from basis $\mathcal{B}$ to basis $\mathcal{C}$.
The matrix $\mathbf{V}$ has columns $v_1, \ldots, v_n$ (initial basis vectors) and $\mathbf{U}$ has columns $u_1, \ldots, u_n$ (final basis vectors).
Change of Coordinates Matrix:
$ \mathbf{S} = \mathbf{U}^{-1} \mathbf{V} $
If $[\mathbf{x}]_{\mathcal{B}}$ represents coordinates in basis $\mathcal{B}$, then:
$ [\mathbf{x}]_{\mathcal{C}} = \mathbf{S} \, [\mathbf{x}]_{\mathcal{B}} $
Key Ideas: