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A1. Consider the advection equation ut + aux = 0, a > 0. Analyse the stability of the
following difference schemes.

(a) forward difference: vn+1
j = vnj − aµ

(
vnj+1 − vnj

)
[7]

(b) the Lax Friedrichs scheme: vn+1
j = 1

2

(
vnj−1 + vnj+1

)
− aµ

2

(
vnj+1 − vnj−1

)
. [7]

(c) the leapfrog scheme: vn+1
j = vn−1

j − aµ
(
vnj+1 − vnj−1

)
[7]

where µ := ∆t/∆x.

(d) Suppose that the leapfrog scheme is used to approximate the advection equation

ut + 5ux = 0

with an initial condition u(x, 0) = u0(x) and subject to periodic boundary conditions
on a unit interval [0, 1]. If the unit interval is sub-divided uniformly by a mesh-size
of h = 0.01, what is the maximum possible value of the time-step k = ∆t so that the
scheme remains stable? [4]

A2. The scalar diffusion equation
ut = νuxx

with ν > 0, is discretized explicitly

vn+1
j − vnj
∆t

= ν
vnj+1 − 2vnj + vnj−1

(∆x)2
.

(a) Compute the truncation error of the method. [12]

(b) What is the order O [(∆t)p + (∆x)q] of the method? [3]

(c) Analyse its stability. [10]
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A3. The general form of a difference scheme for approximating a well-posed PDE is given
by

B1v
n+1 = B0v

n + F n,

where B1, B0 are difference operators and vn = {vnj : j = 0, 1, · · · , J} where J is the
total number of mesh points and vnj ≈ u(xj, tn)

(a) Explain the meaning of the terms: consistency, order of accuracy, stability, and
convergence of the difference scheme. [4]

(b) Suppose that the difference scheme is consistent. Prove that stability implies
convergence. In your proof, indicate places where stability and consistency are
used to demonstrate convergence. [15]

(c) Consider the forward in time centered in space discretization of the advection
equation ut + aux = 0:

vn+1
j = vnj − aµ

2

(
vnj+1 − vnj−1

)
.

Does this scheme converge to the solution of the advection equation? Explain in
terms of Theorem A3 (b). [6]

A4. The diffusion equation
ut = uxx + uyy

on a square is to be approximated by the Alternating Directions Implicit difference
scheme.

(a) Explain some advantages of the ADI method over the Crank-Nicolson method for
the two-dimensional diffusion equation. [5]

(b) The locally one-dimensional ADI scheme in two-dimensions is(
1− 1

2
µxδ

2
x

)
vn+1/2 =

(
1 +

1

2
µyδ

2
y

)
vn

(
1− 1

2
µyδ

2
y

)
vn+1 =

(
1 +

1

2
µxδ

2
x

)
vn+1/2

where

µx =
∆t

(∆x)2
and δ2x = vj+1 − 2vj + vj−1.

By eliminating the intermediate variable vn+1/2 verify that the ADI scheme is a
modification of the Crank-Nicolson scheme up to a higher order term.(

1− 1

2
µxδ

2
x −

1

2
µyδ

2
y

)
vn+1 =

(
1 +

1

2
µxδ

2
x +

1

2
µyδ

2
y

)
vn.

[8]

(c) Show that the ADI scheme in Part (4b) is unconditionally stable. [12]
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A5. (a) Calculate the dispersion relation for the two dimensional Schrödinger equation

ut = i∆u

where ∆u = uxx + uyy.
Hint: Consider a plane wave solution of the form u = ei(ξxx+ξyy−ωt) [4]

(b) Show that the dispersion relation of the Crank-Nicolson approximation of the
Schrödinger equation(

1− iµ
1

2
δ2x − iµ

1

2
δ2y

)
vn+1 =

(
1 + iµ

1

2
δ2x + iµ

1

2
δ2y

)
vn

where

∆x = ∆y = h, k = ∆t, and µ =
k

h2

is given by

tan

(
ωk

2

)
= 2µ

[
sin2

(
ξxh

2

)
+ sin2

(
ξyh

2

)]
Hint: Consider a plane wave solution of the form u = ei(ξxjh+ξyℓh−ωt) [10]

(c) Compute an approximate dispersion relation of the Crank-Nicolson scheme for
|ξx|h ≪ 1, |ξy|h ≪ 1 and compare with the dispersion relation of the Schrödinger
equation from Part 5(a). [4]

(a) For a dispersion relation ω = ω(ξx, ξy) in two-dimensions, define the phase ve-
locity and group velocity. [2]

(d) Calculate the group velocity for the Crank Nicolson scheme of the Schrödinger
equation. Comment on the value of the group velocity for |ξx|h ≪ 1, |ξy|h ≪ 1
and for ξxh ≈ ξyh ≈ π. [5]

A6. Suppose that the mesh points are chosen such that

0 = x0 < x1 < x2 < · · · < xJ−1 < xJ = 1

but are otherwise arbitrary for some J representing the number of sub-divisions. The
heat equation ut = uxx is approximated over the interval 0 ≤ t ≤ tf by

vn+1
j − vnj
∆t

=
2

∆xj−1 +∆xj

(
vnj+1 − vnj

∆xj

−
vnj − vnj−1

∆xj−1

)
where ∆xj = xj+1 − xj.

(a) Show that the leading terms of the truncation error of this approximation are

T n
j =

1

2
∆t utt −

1

3
(∆xj −∆xj−1)uxxx

− 1

12

[
(∆xj)

2 + (∆xj−1)
2 −∆xj∆xj−1

]
uxxxx.

[15]
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(b) Suppose now that the boundary and initial conditions u(0, t), u(1, t), and u(x, 0)
are provided. Let ∆x = max∆xj and suppose the mesh is sufficiently regular
such that |∆xj −∆xj−1| ≤ α(∆x)2 for every j = 1, 2, 3, · · · , J − 1, where α > 0
is constant.

Show that

|vnj − u(xj, tn)| ≤
(
1

2
∆t Mtt + (∆x)2

{
1

3
αMxxx +

1

12
[1 + α∆x]Mxxxx

})
tf

provided that the stability condition

∆t ≤ 1

2
∆xj−1∆xj, j = 1, 2, · · · , J − 1,

is satisfied. [10]

END OF QUESTION PAPER
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