
MTSCS546 Assignment 2

Numerical Methods for Partial Differential Equations

Due: 18 November, 2022

1. Suppose a well-posed linear evolutionary PDE is discretized by a difference
scheme

B1v
n+1 = B0v

n + Fn, for n∆t ≤ tF .

(a) Explain what it means for the difference scheme to be consistent,
convergent and stable.

Solution:
Consistency:
Let u be the exact solution of the PDE. Define the truncation error
Tn as follows:

Tn := B1u
n+1 −B0u

n − Fn

A difference scheme is consistent if ∥Tn∥ → 0 as the mesh parameters
∆t(h) → 0 along a refinement path.
Convergence:
A difference scheme is convergent if

∥un − vn∥ → 0

as the mesh parameters ∆t(h) → 0 for any initial data u0 for which
the PDE is well-posed.
Stability:
Suppose un, wn are two numerical solutions that start from different
initial data u0, w0 but have the same right hand side Fn for every n.
Then the numerical scheme is stable in the norm ∥ · ∥ if there exist a
constant K such that

∥un − wn∥ ≤ K∥u0 − w0∥.

Since
B1(u

n − wn) = B0(u
n−1 − wn−1),

we have that
un − wn = B−1

1 B0(u
n−1 − wn−1)

this condition can be written as

∥un − wn∥ ≤ ∥(B−1
1 B0)

n∥∥u0 − w0∥.
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It follows that a scheme is stable if

∥(B−1
1 B0)

n∥ ≤ K for all n∆t ≤ tf

(b) Prove that if the difference scheme is consistent with the initial-
boundary value PDE, then stability implies convergence. Indicate
in your proof where consistency and stability are utilized to obtain
convergence.

Solution:
Suppose un is the exact solution at time t = n∆t and vn the numeri-
cal solution. We want to find conditions that guarantee convergence
of vn to un in the norm ∥ · ∥ as ∆t(h) → 0. The definition of the
truncation error Tn implies that:

B1(u
n+1 − vn+1) = B0(u

n − vn)− Tn.

Setting n = 0 we see that

B1(u
1 − v1) = B0(u

0 − v0)− T 0.

But the initial conditions are the same so that u0 = v0. Hence

u1 − v1 = −B−1
1 B0B

−1
1 T 0,

and
u2 − v2 = −(B−1

1 B0)
2B−1

1 T 0 −B−1
1 T 1.

Continuing in this fashion, for general n, we have

un−vn = −
[
B−1

1 Tn−1 + (B−1
1 B0)B

−1
1 Tn−2 + · · ·+ (B−1

1 B0)
nB−1

1 T0

]
.

Taking norms on both sides

∥un−vn∥ ≤ ∥B−1
1 ∥∥Tn−1∥+∥(B−1

1 B0)B
−1
1 ∥∥Tn−2∥+· · ·+∥(B−1

1 B0)
nB−1

1 ∥∥T 0∥.

The stability condition

∥(B−1
1 B0)

nB−1
1 ∥ ≤ KK1∆t

implies that

∥un − vn∥ ≤ KK1∆t

n−1∑
m=0

∥Tm∥.

If the scheme is consistent, then

∥Tm∥ → 0

for every m∆t ≤ tf as ∆t(h) → 0. This implies that

∥un − vn∥ → 0

if ∆t(h) → 0.

2



(c) The difference scheme

vn+1
j − vnj

∆t
=

vnj+1 − 2vnj + vnj−1

(∆x)2
+

1

2
vnj

is applied to discretize the following parabolic PDE

ut = uxx + u.

Numerical results on a test example show that the difference scheme
does not converge to the true solution. Explain this observation in
light of the result from Part 1(b).

Solution:
We observe that the scheme is inconsistent at the term 1

2v
n
j since the

corresponding term in the PDE is not scaled by the factor of 1/2. To
prove this observation, we need to show that the truncation error Tn

j

does not converge to zero. We use Taylor series of the exact solution
u = un

j := u(xj , tn) ≈ vnj at (xj , tn) to compute the truncation error.

un+1
j = u+ (∆t)ut +

1

2
(∆t)2utt + · · ·

so that
un+1
j − un

j

∆t
= ut +

1

2
(∆t)utt + · · · .

By a similar computation,

un
j+1 − 2un

j + un
j−1

(∆x)2
= uxx +

1

12
(∆x)2uxxxx + · · ·

The truncation error is

Tn
j :=

un+1
j − un

j

∆t
−

un
j+1 − 2un

j + un
j−1

(∆x)2
− 1

2
un
j .

Grouping terms, we have

Tn
j = (ut − uxx − u) +

1

2
u+

1

2
(∆t)utt −

1

12
(∆x)2uxxxx + · · ·

The first term in parentheses vanishes since it is the PDE we are approx-
imating. If ∆t is chosen such that the scheme is stable, then Tn

j → 1
2u

n
j

as ∆t(h) → 0. This shows that the scheme is not consistent. Therefore,
by the Lax Equivalence Theorem, the scheme is not convergent.

2. (a) Define dispersion, phase velocity and group velocity for a linear PDE.
Solution:
Consider the plane wave solution ei(ξx−ωt) of a linear PDE where ξ
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is the wavenumber and ω is the frequency. The dispersion relation of
the PDE is the functional relation

ω = ω(ξ)

between the wavenumber and the wavelength. A linear PDE is dis-
persive if the dispersion relationship is not linear. The phase velocity
cp is defined as the function

cp :=
ω

ξ
.

The phase velocity measures the rate at which the wave propagates
in the medium. The group velocity is defined as

cg :=
dω

dξ
.

It measures the speed of wave packets.

(b) Is the advection equation (ut + aux = 0) dispersive? The KdV equa-
tion (ut + ρux + νuxxx = 0) ?

Solution:
Consider a plane wave solution of the form ei(ξx−ωt). Plugging into
the advection equation gives

−iω + aiξ = 0.

This is equivalent to
ω = aξ.

Different wavelengths propagate at the same phase velocity ω
ξ = a

hence the advection equation is not dispersive. On the other hand,
the dispersion relation of the KdV equation is given by

−iω + ρiξ + ν(iξ)3 = 0.

This can be simplified to give

ω = ρξ − νξ3 = ξ(ρ− νξ2).

This dispersion relation is nonlinear. Hence the KdV equation is
dispersive.

(c) Calculate the dispersion relations of the following schemes for the
advection equation: Lax-Wendroff, Crank-Nicolson.

Solution:
The Lax-Wendroff scheme for the advection equation is given by

vn+1
j = vnj − aµ

2
(vnj+1 − vnj−1) +

a2µ2

2
(vnj+1 − 2vnj + vnj−1)
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where µ = k/h2, k = ∆t and h = ∆x. We propose a discrete plane
wave solution of the form ei(ξjh−ωnk). Plugging into the LaxWendroff
scheme yields

e−iωk = 1− aµ

2

(
eiξh − e−iξh

)
+

a2µ2

2

(
eiξh − 2 + e−iξh

)
.

Using

sin(θ) =
eiθ − e−iθ

2i
and

cos(θ) =
eiθ + e−iθ

2
we get

e−iωk = 1− aµi sin(ξh)− 2a2µ2 sin2(ξh/2)

Taking the real and imaginary parts

cos(ωk) = 1− 2a2µ2 sin2(ξh/2), − sin(ωk) = −aµsin(ξh).

Dividing, we obtain the dispersion relation for Lax Wendroff

tan(ωk) =
aµ sin(ξh)

1− 2a2µ2 sin2(ξh/2)
.

The Crank-Nicolson scheme for the advection equation is given by

vn+1
j − vnj

k
+

a

2

(
vn+1
j+1 − vn+1

j−1

2h
+

vnj+1 − vnj−1

2h

)
= 0.

Let µ = k/h, and ei(ξjh−ωnk) be a discrete plane wave. Plugging into
the Crank-Nicolson scheme

e−iωk − 1 = −aµi

2

(
eiξh − e−iξh

2i

)
e−iωk − aµi

2

(
eiξh − e−iξh

2i

)
.

From which we derive the expression

e−iωk − 1 = −aµi

2
sin(ξh)(e−iωk + 1)

or
1

i

e−iωk − 1

e−iωk + 1
= −aµ

2
sin(ξh).

Note that the right hand side is equivalent to (show this)

− tan(ωk/2) =
1

i

e−iωk − 1

e−iωk + 1
.

Therefore the dispersion relation of the Crank-Nicolson scheme for
the advection equation is

tan(ωk/2) =
aµ

2
sin(ξh)
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(d) What is the effect of dissipativity on dispersive numerical schemes?

Solution:
Adding dissipation to dispersive schemes helps to dampen high fre-
quency parasitic waves that emerge due to numerical dispersion.

3. (a) Calculate and plot the dispersion relation for the one dimensional
Schrödinger equation

ut = iuxx

Solution:
Consider a plane wave solution ei(ξx−ωt). We get after plugging

−iω = i(iξ)2

which is equivalent to
ω = ξ2.

(b) Calculate the dispersion relation for the Crank-Nicolson scheme ap-
plied to the Schrödinger equation.

Solution:
The Crank-Nicolson scheme for the Schrödinger equation is

vn+1 = vn +
µi

2

(
δ2xv

n+1 + δ2xv
n
)

where
δ2xv

n := vnj+1 − 2vnj + vnj−1

and µ = k/h2. Taking a discrete plane wave solution ei(ξjh−ωnk) we
get

e−iωk − 1 =
µi

2

(
eiξh − 2 + e−iξh

) (
e−iωk + 1

)
which is identical to (show this)

1

i

e−iωk − 1

e−iωk + 1
= −2µ sin2(ξh/2).

Therefore the dispersion relation is

tan(ωk/2) = 2µ sin2(ξh/2)

(c) Calculate the group velocity. Compare the group velocity of the
Crank-Nicolson scheme with that of the equation ut = iuxx.

Solution:
The group velocity is computed using implicit differentiation. We
assume the relation ω = ω(ξ) and use the definition

k

2
sec2(ωk/2)

dω

dξ
= 2µh sin(ξh/2) cos(ξh/2)
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so that
dω

dξ
=

2µh sin(ξh)

k sec2(ωk/2)
.

When ξh is small, sin(ξh) ≈ ξh and using µ = k/h2 and sec2(ωk) ≈ 1
for small k we see

dω

dξ
≈ 2ξ.

The group velocity of the Schrödinger equation is

cg = 2ξ,

which we get from differentiating the dispersion relation ω = ξ2.
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