MTSCS546 Assignment 2

Numerical Methods for Partial Differential Equations

Due: 18 November, 2022

1. Suppose a well-posed linear evolutionary PDE is discretized by a difference
scheme

Bio"t = Byv™ + F™, for nAt < tp.

(a) Explain what it means for the difference scheme to be consistent,
convergent and stable.
Solution:
Consistency:
Let u be the exact solution of the PDE. Define the truncation error
T™ as follows:
T" .= Byut! — Bou™ — F"

A difference scheme is consistent if |[T"|| — 0 as the mesh parameters
At(h) — 0 along a refinement path.

Convergence:

A difference scheme is convergent if

|u" — o™ — 0

as the mesh parameters At(h) — 0 for any initial data u° for which
the PDE is well-posed.

Stability:

Suppose u™, w™ are two numerical solutions that start from different
initial data ©2, w® but have the same right hand side F” for every n.
Then the numerical scheme is stable in the norm || - || if there exist a
constant K such that

[ = w" || < KJu® — w°l].

Since
B (un . wn) _ Bo(un—l o wn—l)7

we have that
u? — w" = BIIB()(UW‘71 o wnfl)

this condition can be written as

[l = w™ | < [I(By " Bo)" [[[lu® — w’].



It follows that a scheme is stable if

|(By'By)"|| < K for all nAt <ty

Prove that if the difference scheme is consistent with the initial-
boundary value PDE, then stability implies convergence. Indicate
in your proof where consistency and stability are utilized to obtain
convergence.

Solution:

Suppose u™ is the exact solution at time ¢ = nAt and v™ the numeri-
cal solution. We want to find conditions that guarantee convergence
of v™ to u™ in the norm || - || as At(h) — 0. The definition of the
truncation error T implies that:

By(u™t! — ") = By(u™ — ™) — T™.
Setting n = 0 we see that
Bi(u' —v') = By(u® — %) — T°.
But the initial conditions are the same so that u® = v°. Hence
u' —v' = -B;'ByB ' T°,

and
u? —v? = —(B{'By)?B;'T° — BT

Continuing in this fashion, for general n, we have
u"—v" = — [By'T" T 4 (Br Y Bo) By T T + -+ (By P Bo)" By T -
Taking norms on both sides
lu =™ || < 1By T+ 1By Bo) By 1T =21+ -+ [(By ™ Bo)" By I T°|I.
The stability condition
I(Br'Bo)" By || < KK 1At

implies that

n—1
lu = o™ < KE A Y ([T,
m=0
If the scheme is consistent, then
17 = 0

for every mAt < t; as At(h) — 0. This implies that
[[u =" = 0

it At(h) — 0.



2.

(¢) The difference scheme
+1 n n

v = FES S B )

At (Az)? 2

is applied to discretize the following parabolic PDE
Ut = Ugpy + U.

Numerical results on a test example show that the difference scheme
does not converge to the true solution. Explain this observation in
light of the result from Part 1(b).

Solution:

We observe that the scheme is inconsistent at the term %v;? since the
corresponding term in the PDE is not scaled by the factor of 1/2. To
prove this observation, we need to show that the truncation error 77"
does not converge to zero. We use Taylor series of the exact solution

u=u} = u(zj,t,) = v} at (z;,t,) to compute the truncation error.
n+1 1 2
ulmt = u+ (At)us + E(At) Upp 4 -+ -

so that
ut 1

JTt] = Uy + i(At)’U,tt—F"' .

By a similar computation,

a” . — O oy
Ujt1 2“] + Uj—1

(Ba)?

1

The truncation error is

n+l  _ n ) o n n
. Y uj uiyy —2uitui g 1o
= — — —u".

At (Az)?2 9"

Grouping terms, we have

1 1 1
T/ = (ug — Ugz — u) + U + E(At)utt - E(Aa‘)Quum N

The first term in parentheses vanishes since it is the PDE we are approx-
imating. If At is chosen such that the scheme is stable, then T — %u}‘
as At(h) — 0. This shows that the scheme is not consistent. Therefore,

by the Lax Equivalence Theorem, the scheme is not convergent.

(a) Define dispersion, phase velocity and group velocity for a linear PDE.
Solution:
Consider the plane wave solution e*¢*=% of a linear PDE where &



is the wavenumber and w is the frequency. The dispersion relation of
the PDE is the functional relation

w = w(¢)

between the wavenumber and the wavelength. A linear PDE is dis-
persive if the dispersion relationship is not linear. The phase velocity
cp is defined as the function

The phase velocity measures the rate at which the wave propagates
in the medium. The group velocity is defined as

dw
Cqg

It measures the speed of wave packets.

Is the advection equation (u; + au, = 0) dispersive? The KdV equa-
tion (ug + puy + Vg = 0) ?

Solution:

Consider a plane wave solution of the form e*(
the advection equation gives

§2=wt) - Plugging into

—iw + at§ = 0.
This is equivalent to

w = a€.

Different wavelengths propagate at the same phase velocity £ = a
hence the advection equation is not dispersive. On the other hand,
the dispersion relation of the KdV equation is given by

—iw + pi€ + v(i&)* = 0.
This can be simplified to give
w=pt —vE =E(p—ve?).

This dispersion relation is nonlinear. Hence the KdV equation is
dispersive.

Calculate the dispersion relations of the following schemes for the
advection equation: Lax-Wendroff, Crank-Nicolson.

Solution:
The Lax-Wendroff scheme for the advection equation is given by

n+l _ n apl )
v =] 7(vj+1 vig) + ——

4



where 1 = k/h?, k = At and h = Ax. We propose a discrete plane
wave solution of the form e*(€77=«nk) - Plugging into the Lax Wendroff
scheme yields

2,2
i al ; _ a” [ ; i
e iwk 1— (eth —e z&h) 5 (eth ) e zgh) )

2
Using ‘
sin(f) = < _2:720
and 0 ,—if
cos(f) = < +26
we get

e~k — 1 — quisin(€h) — 2a®p® sin®(Eh/2)
Taking the real and imaginary parts
cos(wk) =1 — 2a%u? sin?(€h/2), —sin(wk) = —ausin(Eh).
Dividing, we obtain the dispersion relation for Lax Wendroff

apsin(Eh)
1 — 2a2p2sin®(€h/2)

The Crank-Nicolson scheme for the advection equation is given by

n+l _  n n+l _  n+l n _an
Vi T e (Vi TV Vi TV
2h

tan(wk) =

k +2 2h

Let 1 = k/h, and e"(€7h=«nk) he a discrete plane wave. Plugging into
the Crank-Nicolson scheme

ik _q = erth —emieh ik _ G efth — e\
2 21 2 2

From which we derive the expression

ek —1 = —Zsin(gh)(eF +1)

or -
le7™wh —1 ap .
Em = —7 Sln(fh).
Note that the right hand side is equivalent to (show this)
le vk —1
an(w / ) i e—wk +1

Therefore the dispersion relation of the Crank-Nicolson scheme for
the advection equation is

tan(wk/2) = % sin(&h)



(d)

What is the effect of dissipativity on dispersive numerical schemes?
Solution:

Adding dissipation to dispersive schemes helps to dampen high fre-
quency parasitic waves that emerge due to numerical dispersion.

Calculate and plot the dispersion relation for the one dimensional
Schrodinger equation

Up = Ugy
Solution:
Consider a plane wave solution e!(€*=“%) We get after plugging
—iw = i(i€)?
which is equivalent to
w=E2.

Calculate the dispersion relation for the Crank-Nicolson scheme ap-
plied to the Schrodinger equation.

Solution:
The Crank-Nicolson scheme for the Schrodinger equation is

n n //[/Z- n Iy n
"t =y +5((5§v g 520m)

where
2 -
6mvn T U?‘Fl - 21}? + v?—l
and p = k/h?. Taking a discrete plane wave solution e*(&7/h=<7k) we
get )
—i MY igh —iEhY (,—iwk
em Wk 1= (eh — 92 7% (e +1
oy ) (e 1)

which is identical to (show this)

1 efiwk’ -1 L,
;m = 72‘&5111 (fh/?)

Therefore the dispersion relation is

tan(wk/2) = 2usin?(£h/2)

Calculate the group velocity. Compare the group velocity of the
Crank-Nicolson scheme with that of the equation u; = .
Solution:

The group velocity is computed using implicit differentiation. We
assume the relation w = w(§) and use the definition

dw

EseCQ(wk/Q) s

5 = 2uhsin(§h/2) cos(Eh/2)



so that

dw _ 2phsin(§h)

d¢  ksec?(wk/2)’
When &h is small, sin(€h) ~ £h and using p = k/h? and sec?(wk) ~ 1
for small k we see

d—gm%.

The group velocity of the Schrodinger equation is
cg = 2€,

which we get from differentiating the dispersion relation w = &£2.



