
HMTHCS 212 Assignment 3 Name
This assignment is due by Monday July 18, 2022 by 6pm.

1. (10 points)

(a) Find the values of the coefficients α, β, and γ and order of convergence p such
that f ′(x) is best approximated by the formula

f ′(x) =
αf(x+ h) + βf(x) + γf(x− 2h)

h
+O(hp)

Solution:

αf(x+ h) = α

[
f(x) + hf ′(x) +

h2

2
f ′′(x) +

h3

6
f (3)(ξ1)

]
βf(x) = βf(x)

γf(x− 2h) = γ

[
f(x)− 2hf ′(x) +

(2h)2

2
f ′′(x)− (2h)3

6
f (3)(ξ2)

]
.

Combining similar terms, we get

αf(x+ h) + βf(x) + γf(x− 2h) = [α + β + γ] f(x)

+ [α− 2γ]hf ′(x)

+ [α + 4γ]
h2

2
f ′′(x)

+
h3

6

[
αf (3)(ξ1)− 8γf (3)(ξ2)

]
where ξ1 ∈ (x, x+ h) and ξ2 ∈ (x− 2h, x) .We require that the coefficients satisfy
the following conditions:

α + β + γ = 0

α− 2γ = 1

α + 4γ = 0

From the third equation
α = −4γ

hence plugging into the second equation

−4γ − 2γ = 1

i.e.

γ = −1

6
, α =

4

6
, β = −3

6



The error term is then

h3

6

[
4

6
f (3)(ξ1) +

8

6
f (3)(ξ2)

]
=

h3

6
· 2 · f (3)(ξ) =

h3

3
f (3)(ξ)

where ξ ∈ (x − 2h, x + h) where we have used the Generalized Intermediate
Value Theorem:

There exists a ξ ∈ (x− 2h, x+ h) such that for g(x) = f (3)(x) we have

g(ξ) =
w1g(ξ1) + · · ·+ wng(ξn)

w1 + · · ·+ wn

with n = 2 and w1 =
4
6
and w2 =

8
6
.

Hence

f ′(x) =
4f(x+ h)− 3f(x)− f(x− 2h)

6h
− h2

3
f (3)(ξ)

(b) Using the formula derived from part (a), find an approximation of the derivative
f ′(a) for the function f(x) = ln(x) at a = 1 for the following values of h (correct
to 6 decimal places).

(i) h = 0.1

(ii) h = 0.05

(iii) h = 0.025

Solution:

4 ln(1 + 0.1)− 3 ln(1)− ln(1− 0.2)

0.6
= 1.007307

4 ln(1 + 0.05)− 3 ln(1)− ln(1− 0.1)

0.3
= 1.001737

4 ln(1 + 0.025)− 3 ln(1)− ln(1− 0.05)

0.15
= 1.000425

(c) Compute the exact value of the derivative f ′(1) and then find the absolute errors
of the approximations for each of the three values of h in part (b) (correct to 6
decimal places).

Solution:
The exact derivative is f ′(1) = 1. The absolute errors are

|1− 1.007307| = 0.007307

|1− 1.001737| = 0.001737

|1− 1.000425| = 0.000425



(d) Let Eh be the absolute error for the approximation of the derivative f ′(1) from
part (c) for a value of h. By computing E0.1/E0.05 and E0.05/E0.025, comment on
the order of convergence.

Solution:

E0.1/E0.05 =
0.007307

0.001737
= 4.206

E0.05/E0.025 =
0.001737

0.000425
= 4.088

We see that when the value of h is reduced by a factor of 2, then the error is
reduced by a factor of 4. This shows that the rate of convergence is second order,
that is O(h2) as predicted by the error term.

2. (10 points)

(a) Find the values of the weights a0, a1 and a2 such that the quadrature formula∫ 1

0

f(x) dx ≈ a0f(0) + a1f(0.25) + a2f(1)

has the highest possible degree of precision.

Solution:
We want to find the highest degree of a monomial such that the quadrature
formula gives an exact solution∫ 1

0

1 dx = 1 = a0 + a1 + a2

∫ 1

0

x dx =
1

2
=

1

4
a1 + a2∫ 1

0

x2 dx =
1

3
=

1

16
a1 + a2

From the second equation,

a2 =
1

2
− 1

4
a1.

Substituting into the third equation

1

3
=

1

16
a1 +

1

2
− 1

4
a1

So that
3

16
a1 =

1

6
−→ a1 =

16

3
· 1
6
=

8

9

Hence

a2 =
1

2
− 1

4

8

9
=

5

18
.



Finally,

a0 = 1− 8

9
− 5

18
= 1− 7

6
= −1

6

Hence, ∫ 1

0

f(x) dx ≈ −1

6
f(0) +

8

9
f(0.25) +

5

18
f(1)

(b) Use the quadrature formula from part (b) to approximate the value of the integral∫ 1

0

1

1 + x2
dx.

Solution:∫ 1

0

1

1 + x2
dx ≈ −1

6

1

(1 + 02)
+

8

9

1

(1 + 0.252)
+

5

18

1

(1 + 12)
= 0.808823

The exact value is∫ 1

0

1

1 + x2
dx = [arctan(1)− arctan(0)] =

π

4

So the absolute error is

|π/4− 0.0808823| = 0.023425.

Compute the exact value of this integral and find the absolute error of the ap-
proximation from part (a).

(c) Show that Gaussian quadrature with 3 nodes and weights∫ 1

−1

f(x) dx ≈ 5

9
f
(
−
√
3/5

)
+

8

9
f(0) +

5

9
f
(√

3/5
)

has degree of precision equal to 5.

Solution:
We need to verify the maximum degree of monomial such that Gaussian quadra-
ture with 3 nodes is exact.∫ 1

−1

1 dx = 2 =
5

9
+

8

9
+

5

9
=

18

9
. ✓

∫ 1

−1

x dx = 0 = −5

9

√
3

5
+

5

9

√
3

5
. ✓∫ 1

−1

x2 dx =
2

3
=

5

9
· 3
5
+

5

9
· 3
5
. ✓



∫ 1

−1

x3 dx = 0 = −5

9

(
3

5

)3/2

+
5

9

(
3

5

)3/2

. ✓∫ 1

−1

x4 dx =
2

5
=

5

9

(
9

25

)
+

5

9

(
9

25

)
. ✓

∫ 1

−1

x5 dx = 0 = −5

9

(
3

5

)5/2

+
5

9

(
3

5

)5/2

. ✓∫ 1

−1

x6 dx =
2

7
=

5

9

(
27

125

)
+

5

9

(
27

125

)
=

6

25
X

So the degree of precision is equal to 5.

3. (10 points)

(a) The left end-point rule is defined as follows: for nodes x0 and x1, approximate the
integral by the area of a rectangle whose height is evaluated at the left end-point
of the interval. Using Taylor series centered at x = x0, and expanding f(x) up to
the linear term only, show that the left end-point rule with remainder is given by∫ x1

x0

f(x) dx = hf(x0) +
h2

2
f ′(c)

for some c ∈ (x0, x1).

Solution:
Expand f(x) around x = x0 by Taylor series.

f(x) = f(x0) + (x− x0)f
′(c)

for some c ∈ (x0, x1). Integrating both side of the Taylor series on an interval
[x0, x1] ∫ x1

x0

f(x) dx =

∫ x1

x0

f(x0) dx+

∫ x1

x0

(x− x0)f
′(c) dx

Set h = x1 − x0 and change variables u = x− x0. When x = x0, u = 0 and when
x = x1, then u = h. Then the integral becomes∫ x1

x0

f(x) dx = f(x0)

∫ h

0

du+ f ′(c)

∫ h

0

u du = hf(x0) +
h2

2
f ′(c)

(b) Generalize the method developed in part (a) to show that the composite left-end
point method with n sub-divisions is given by∫ b

a

f(x) dx = h
n−1∑
k=0

f(a+ kh) + (b− a)
h

2
f ′(c)

where c ∈ (a, b).



Solution:
Set h = (b− a)/n, a = x0, xk = a + kh and b = xn. Using the left end-points as
heights, we have∫ b

a

f(x) dx = h [f(x0) + f(x1) + · · ·+ f(xn−1)] +
h2

2
[f ′(c1) + · · ·+ f ′(cn)]

where there is a ck for each interval. Using summation notation this is equivalent
to ∫ b

a

f(x) dx = h
n−1∑
k=0

f(xk) +
h2

2

n∑
k=1

f ′(ck)

The first sum can be rewritten as

h
n−1∑
k=0

f(a+ kh).

By using the Generalized Intermediate Value Theorem, there exists a c such that
second sum is

h2

2

n∑
k=1

f ′(ck) =
h2

2
nf ′(c).

Since n = (b− a)/h we have

h2

2
nf ′(ck) =

h2

2
· (b− a)

h
f ′(ck).

Hence, ∫ b

a

f(x) dx = h
n−1∑
k=0

f(a+ kh) + (b− a)
h

2
f ′(c)

as required.

(c) Find the minimum number of sub-divisions n such that the integral∫ 1

0

x2 dx

can be approximated by the left end-point rule up to an error of at most 0.001.
Hence find the minimum value of h that corresponds to this n.

Solution:
We want to find n such that the error term is less than 0.001, that is find n such
that

(b− a)
h

2
f ′(c) ≤ 0.001

We have f ′(c) = 2, and b− a = 1. So

h

2
· 2 ≤ 0.001

so that h ≤ 0.001 and n = 1/h = 1/0.001 = 1, 000



4. (10 points)

Consider the integral

I =

∫ π

0

exp(sin(x)) dx ≈ 6.208758035711110.

(a) Use the Trapezoidal rule with n = 4 sub-divisions to approximate I.

Solution:

I ≈ h

2
[f(0) + 2f(π/4) + 2f(π/2) + 2f(3π/4) + f(π)]

I ≈ π

8

[
esin(0) + 2esin(π/4) + 2esin(π/2) + 2esin(3π/4) + esin(π)

]
= 6.106087

(b) Use Simpson’s method with n = 2 · 2 = 4 sub-divisions to approximate I.

Solution:

I ≈ h

3
[f(0) + f(π) + 4f(π/4) + 2f(π/2) + 4f(3π/4)]

I ≈ π

12

[
esin(0) + esin(π) + 4esin(π/4) + 2esin(π/2) + 4esin(3π/4)

]
= 6.19456

(c) Use Gaussian quadrature with n = 3 nodes to approximate I.

Solution:
In order to apply Gaussian quadrature on a general interval, we need to tranform
the integral as follows∫ b

a

f(x) dx =

∫ 1

−1

f

(
(b− a)t+ a+ b

2

)
b− a

2
dt =

∫ 1

−1

f (π(t+ 1)/2)
π

2
dt

where we used a = 0, b = π. Hence,∫ π

0

esin(x) dx ≈ π

2

[
5

9
f
(π
2

[
−
√
3/5 + 1

])
+

8

9
f
(π
2

)
+

5

9
f
(π
2

[√
3/5 + 1

])]
∫ π

0

esin(x) dx ≈ π

2

[
5

9
e
sin π

2

(
−
√

3/5+1
)
+

8

9
esin (

π
2 ) +

5

9
e
sin π

2

(√
3/5+1

)]
= 6.264046

(d) The graph of f(x) = exp(sin(x)) and its derivatives f ′(x), f (2)(x), f (3)(x) and
f (4)(x) on [0, π] is depicted below.

Using information from this graph answer the following questions.

(i) Find the maximum value of h such that Simpson’s rule applied to the integral
I results in an error not greater than 10−3.



Solution:
The error term for Simpson’s rule is

−(b− a)h4

180
|f (4)(ξ)|

for some ξ ∈ (a, b). We want to find h such that

(b− a)h4

180
|f (4)(ξ)| ≤ 10−3.

Solving for h, and setting b− a = π we have

h ≤
(
180 · 10−3

π|f (4)(ξ)|

)1/4

=

(
0.18

π|f (4)(ξ)|

)1/4

.

We need to find the largest value of |f (4)(ξ)|. From the graph, we see
|f (4)(ξ)| ≈ 11. Hence

h ≤
(
0.18

11π

)1/4

= 0.2686

(ii) Find the number of sub-divisions n such that the Trapezoidal rule applied to
I results in an error not greater than 10−3.
Solution:
The error for the Trapezoidal rule is given by

−(b− a)h2

12
f (2)(ξ)



for some ξ ∈ (a, b). First let’s determine h such that

(b− a)h2

12
|f (2)(ξ)| ≤ 10−3.

Solving for h,

h ≤

√
0.012

π|f (2)(ξ)|
.

To determine the smallest possible right hand side, we need to find the largest
possible value of |f (2)(ξ)| on the interval (0, π). From the graph, this value
is around 3. Hence

h ≤
√

0.012

3π
= 0.0357.

The corresponding number of subintervals is then

n = (b− a)/h = π/0.0357 ≈ 88.

5. (10 points)

Consider the initial value problem

y′(t) = y(t)− e−t, y(0) = 1, t ∈ [0, 0.01]

The exact solution is y(t) = 1
2
(et + e−t).

(a) Use Euler’s method with step size h = 0.01 to approximate y(0.01). Compute the
absolute error of the approximation at t = 0.01.

Solution:
Euler’s method is given by the iteration

yn+1 = yn + hf(tn, yn)

. The starting point is y0 = 1 and f(t, y) = y − e−t So

yn+1 = yn + h
[
yn − e−tn

]
.

y1 = 1 + 0.01
[
1− e−0

]
= 1.

The absolute error at t = 0.01 is

|y(0.01)− y1| = |0.5(e0.01 + e−0.01)− 1| = 0.00005 = 5× 10−5.



(b) The modified Euler’s method (Heun’s method) is defined as

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn + hf(tn, yn))] , y0 = y(0).

Use the modified Euler’s method to approximate the value of y(0.01) using a step
size of h = 0.01. Compute the absolute error at t = 0.01.

Solution:
The iteration for modified Euler in this case is given by

yn+1 = yn +
h

2

[
yn − e−tn + yn + h(yn − e−tn)− e−tn+1

]
.

Solving for yn+1:

yn+1 = yn(1 + h+ h2/2)− e−tn(h/2 + h2/2)− h

2
e−tn+1 = 1.0000497508

The absolute error is therefore,

|y(0.01)− y1| = 2.496× 10−7.

(c) Is the modified Euler’s method an explicit or implicit method? Explain.

Solution:
The modified Euler method is an explicit method because the value at the next
time step yn+1 depends only on the value of the solution at the current time level
yn.

6. (10 points)

The Crank-Nicholson’s scheme for approximating the initial value problem

y′(t) = f(t, y(t)), y(0) = y0

is defined as follows

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn+1)]

where yn+1 is the unknown.

(a) By integrating the ODE on the interval [tn, tn+1], and using the Trapezoidal rule
to approximate the integral, derive the Crank-Nicholson scheme.

Solution:
Integrating the ODE

y′(t) = f(t, y)

on an interval [tn, tn+1], we get∫ tn+1

tn

y′(t) dt =

∫ tn+1

tn

f(t, y(t)) dt



By the Fundamental Theorem of Calculus, the left hand integral is evaluated as∫ tn+1

tn

y′(t) dt = y(tn+1)− y(tn)

The right hand side can be approximated by the Trapezoidal rule,∫ tn+1

tn

f(t, y(t)) dt =
tn+1 − tn

2
[f(tn, y(tn)) + f(tn+1, y(tn+1))]

Let h := tn+1 − tn and yn ≈ y(tn). Then we obtain the Crank-Nicholson scheme:

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn+1)]

(b) Use the Crank-Nicholson scheme with h = 0.01 to approximate y(0.01) for the
initial value problem in 5(a). Compute the absolute error at t = 0.01

Solution:
The iteration for the Crank-Nicholson scheme in this case is given by

yn+1 = yn +
h

2

[
yn − e−tn + yn+1 − e−tn+1

]
.

Solving for yn+1:

yn+1(1− h/2) = yn(1 + h/2)− h

2

(
e−tn + e−tn+1

)
Hence,

yn+1 =
yn(1 + h/2)− h

2
(e−tn + e−tn+1)

1− h/2
=

1(1 + 0.005)− 0.005(e0 + e−0.01)

1− 0.005

So
y1 = 1.000050000835431.

The absolute error is

|y(0.01)− y1| = 4.188× 10−10.

(c) Is the Crank-Nicholson scheme an explicit or implicit method? Explain.

Solution:
The Crank-Nicholson scheme is an implicit scheme because the solution at the
next time step depends on the solution at both the current and the next time
step.



(d) Use the fourth-order Runge-Kutta (RK-4) method to approximate y(0.01) for the
initial value problem in 5(a). Compute the absolute error at t = 0.01.

Solution:
The RK-4 method is defined by the iteration

yn+1 = yn +
h

6
[k1 + 2k2 + 2k3 + k4]

where
k1 = f(tn, yn)

k2 = f(tn + h/2, yn + hk1/2)

k3 = f(tn + h/2, yn + hk2/2)

k4 = f(tn + h, yn + hk3).

In this case, the values of ki can be computed explicitly as follows,

k1 = y0 − e−t0 = 1− e0 = 0

k2 = (y0 + hk1/2)− e−(t0+h/2) = 1− e−0.005 = 0.0049875

k3 = (y0 + hk2/2)− e−(t0+h/2) = (1 + 0.01 · 0.0049875/2)− e−0.005 = 0.0050125

k4 = (y0 + hk3)− e−t0+h = (1 + 0.01 · 0.0050125)− e−0.01 = 0.010000.

Therefore,

y1 = 1 +
0.01

6
[0 + 2 · 0.0049875 + 2 · 0.0050125 + 0.010000] = 1.00005.

The absolute error is

|y(0.01)− y1| = 4.1667× 10−10.


