
HMTHCS 212 Assignment 2 Name
This assignment is due on Wednesday July 13, 2022 by 6pm.

1. (30 points)

(a) Use Gaussian elimination solve the following system of equations, if possible, and
determine if row interchanges are necessary.

x1 + x2 + x4 = 2

2x1 + x2 − x3 + x4 = 1

−x1 + 2x2 + 3x3 − x4 = 4

3x1 − x2 − x3 + 2x4 = −3

Solution: In matrix form:
1 1 0 1 | 2
2 1 −1 1 | 1
−1 2 3 −1 | 4
3 −1 −1 2 | −3


R2−2R1
R3+R1
R4−3R1−−−−−−−−→


1 1 0 1 | 2
0 −1 −1 −1 | −3
0 3 3 0 | 6
0 −4 −1 −1 | −9



1 1 0 1 | 2
0 −1 −1 −1 | −3
0 3 3 0 | 6
0 −4 −1 −1 | −9

 R3+3R2
R4+4R2−−−−−−−−→


1 1 0 1 | 2
0 −1 −1 −1 | −3

0 0 0 −3 | −3
0 0 3 3 | 3


At this stage naive Gaussian elimination breaks down because of the boxed zero
pivot. Let us interchange row 3 and row 4, and continue with Gaussian elimina-
tion. 

1 1 0 1 | 2
0 −1 −1 −1 | −3
0 0 3 3 | 3

0 0 0 −3 | −3


The matrix is now upper triangular. Solving by back-substitution

−3x4 = −3 =⇒ x4 = 1

3x3 + 3 · 1 = 3 =⇒ 3x3 = 0 =⇒ x3 = 0

−x2 − 1 = −3 =⇒ −x2 = −2 =⇒ x2 = 2

x1 + 2 + 1 = 2 =⇒ x1 = −1



(b) Use Gaussian elimination with backward substitution to solve the following linear
system. Do not re-order the equations.

4x1 + x2 + 2x3 = 9

2x1 + 4x2 − x3 = −5

x1 + x2 − 3x3 = −9

Solution:4 1 2 | 9
2 4 −1 | −5
1 1 −3 | −9

 R2− 1
2
R1

R3− 1
4
R1

−−−−−−−−→

4 1 2 | 9
0 7/2 −2 | −19/2
0 3/4 −7/2 | −45/4


4 1 2 | 9
0 7/2 −2 | −19/2
0 3/4 −7/2 | −45/4

 R3− 3
14

R2
−−−−−−−−−→

4 1 2 | 9
0 7/2 −2 | −19/2
0 0 −43/14 | −129/14


Now using back-substitution, we have

−43

14
x3 = −129

14
=⇒ x3 = 3

7

2
x2 − 2 · 3 = −19

2
=⇒ x2 = −1

4x1 − 1 + 2 · 3 = 9 =⇒ x1 = 1

(c) Show that the LU factorization of the matrix A from part (b) is A = LU , where:

L =

1 0 0
1
2

1 0
1
4

3
14

1

 , and U =

4 1 2
0 7

2
−2

0 0 −43
14


Solution: The matrix U is simply the final upper triangular matrix obtained
after Gaussian elimination so that

U =

4 1 2
0 7

2
−2

0 0 −43
14


The lower triangular matrix is obtained by placing 1’s along the diagonal, and
the multipliers from Gaussian elimination in the lower block, followed by zeros in
the upper block. For example, we subtracted 1

2
R1 from R2 at the beginning. So

the corresponding entry in L is 1
2
and so forth.

L =

 1 0 0
1/2 1 0
1/4 3/14 1





(d) Use the LU factorization from part (c) to solve the linear system in part (b).

Solution: Since A = LU , solving Ax = b is similar to solving LUx = b, which
is identical to solving Ly = b for y = (y1, y2, y3) followed by solving Ux = y for
x = (x1, x2, x3).
Let us solve Ly = b:  1 0 0

1/2 1 0
1/4 3/14 1

y1
y2
y3

 =

 9
−5
−9

 .

By forward substitution,
y1 = 9

1

2
· 9 + y2 = −5 =⇒ y2 = −19

2

1

4
· 9 + 3

14
· −19

2
+ y3 = −9 =⇒ y3 = −129

14
.

Then we solve Ux = y for x.4 1 2
0 7

2
−2

0 0 −43
14

x1

x2

x3

 =

 9
−19/2
−129/14


which we can solve by back-substitution as in the final step of Gaussian elimination
to get

x1 = 1, x2 = −1, x3 = 0, x4 = 3

(e) What is a diagonally dominant matrix? Show that the matrix A from part (b) is
diagonally dominant.

Solution: A matrix A = (aij)1≤i,j≤n is called diagonally dominant if the
magnitude of the diagonal entry is not less than the sum of the magnitudes of all
other entries in the row containing the diagonal. That is

|aii| ≥
n∑

i ̸=j
j=1

|aij|

It is strictly diagonally dominant if

|aii| >
n∑

i ̸=j
j=1

|aij|



(f) Perform 3 steps of the Jacobi iteration to approximate the solution of the linear
system from part (b).

Solution: Since the matrix is strictly diagonally dominant, the Jacobi
iteration converges to the solution. The Jacobi method is the iterationx

(n+1)
1

x
(n+1)
2

x
(n+1)
3

 =

 [9− x
(n)
2 − 2x

(n)
3 ]/4

[−5− 2x
(n)
1 + x

(n)
3 ]/4

[9 + x
(n)
1 + x

(n)
2 ]/3


Starting with an initial guess, sayx

(0)
1

x
(0)
2

x
(0)
3

 =

0
0
0


x

(1)
1

x
(1)
2

x
(1)
3

 =

 9/4
−5/4
3

 =

 2.25
−1.25

3


x

(2)
1

x
(2)
2

x
(2)
3

 =

 [9− x
(1)
2 − 2x

(1)
3 ]/4

[−5− 2x
(1)
1 + x

(1)
3 ]/4

[9 + x
(1)
1 + x

(1)
2 ]/3

 =

17/16
−13/8
10/3

 ≈

1.0625
−1.625
3.333


x

(3)
1

x
(3)
2

x
(3)
3

 =

 [9− x
(2)
2 − 2x

(2)
3 ]/4

[−5− 2x
(2)
1 + x

(2)
3 ]/4

[9 + x
(2)
1 + x

(2)
2 ]/3

 =

 95/96
−91/96
45/16

 ≈

 0.98958
−0.94792
2.8125



(g) Perform 3 steps of the Gauss-Seidel iteration to approximate the solution of the
linear system from part (b).

Solution: The Gauss-Seidel iteration is as followsx
(n+1)
1

x
(n+1)
2

x
(n+1)
3

 =

 [9− x
(n)
2 − 2x

(n)
3 ]/4

[−5− 2x
(n+1)
1 + x

(n)
3 ]/4

[9 + x
(n+1)
1 + x

(n+1)
2 ]/3


Observe the difference (in red) between Jacobi and Gauss-Seidel. Starting with
an initial guess, say x

(0)
1

x
(0)
2

x
(0)
3

 =

0
0
0





x
(1)
1

x
(1)
2

x
(1)
3

 =

 [9− x
(0)
2 − 2x

(0)
3 ]/4

[−5− 2x
(1)
1 + x

(n)
3 ]/4

[9 + x
(1)
1 + x

(1)
2 ]/3

 =

 9/4
−19/8
71/24

 =

 2.25
−2.375
2.9583


x

(2)
1

x
(2)
2

x
(2)
3

 =

 [9− x
(1)
2 − 2x

(1)
3 ]/4

[−5− 2x
(2)
1 + x

(1)
3 ]/4

[9 + x
(2)
1 + x

(2)
2 ]/3

 =

 131/96
−229/192
587/192

 ≈

 1.36458
−1.19271
3.05729


x

(3)
1

x
(3)
2

x
(3)
3

 =

 [9− x
(2)
2 − 2x

(2)
3 ]/4

[−5− 2x
(3)
1 + x

(2)
3 ]/4

[9 + x
(3)
1 + x

(3)
2 ]/3

 =

 261/256
−1529/1536
749/249

 ≈

 1.01953
−0.99544
3.00803



2. (20 points) Consider the following table of data. Find a polynomial of degree 3 that

x -1 0 1 2
y 3 5 5 27

interpolates this data using the following methods. Show that the polynomial is the
same in all three cases.

(a) monomial interpolation

Solution: Form a system of equations by plugging in the points into a polyno-
mial of the form

p(x) = a3x
3 + a2x

2 + a1x+ a0.

The polynomial is of degree 3 because there are 4 points.

p(−1) = −a3 + a2 − a1 + a0 = 3

p(0) = a0 = 5

p(1) = a3 + a2 + a1 + a0 = 5

p(2) = 8a3 + 4a2 + 2a1 + a0 = 27

Writing in matrix format we get the system
−1 1 −1 1
0 0 0 1
1 1 1 1
8 4 2 1



a3
a2
a1
a0

 =


3
5
5
27


which we proceed to solve by Gaussian elimination. First, interchange rows two



and four.
−1 1 −1 1 | 3
8 4 2 1 | 27
1 1 1 1 | 5
0 0 0 1 | 5

 R2+8R1
R3+R1−−−−−−−−→


−1 1 −1 1 | 3
0 12 −6 9 | 51
0 2 0 2 | 8
0 0 0 1 | 5



−1 1 −1 1 | 3
0 12 −6 9 | 51
0 2 0 2 | 8
0 0 0 1 | 5

 R3− 1
6
R2

−−−−−−−−→


−1 1 −1 1 | 3
0 12 −6 9 | 51
0 0 1 1/2 | −1/2
0 0 0 1 | 5


Using back-substitution

a0 = 5

a1 +
1

2
(5) = −1

2
=⇒ a1 = −3

12a2 + 18 + 45 = 51 =⇒ a2 = −1

−a3 − 1 + 3 + 5 = 3 =⇒ a3 = 4

Therefore
p(x) = 4x3 − x2 − 3x+ 5 .

(b) Lagrange’s interpolation

Solution: The Lagrange interpolant in this case is

p(x) = 3
x(x− 1)(x− 2)

(−1− 0)(−1− 1)(−1− 2)
+ 5

(x+ 1)(x− 1)(x− 2)

(0 + 1)(0− 1)(0− 2)

+5
x(x+ 1)(x− 2)

(1 + 1)(1− 0)(1− 2)
+ 27

x(x+ 1)(x− 1)

(2 + 1)(2− 0)(2− 1)

= −1

2
x(x− 1)(x− 2) +

5

2
(x+ 1)(x− 1)(x− 2)

−5

2
x(x+ 1)(x− 2) +

9

2
x(x+ 1)(x− 1)

Expanding this, we get

p(x) = x3

[
−1

2
+

5

2
− 5

2
+

9

2

]
+ x2

[
3

2
− 5 +

5

2

]
+x

[
−1− 5

2
+ 5− 9

2

]
+ 5

= 4x3 − x2 − 3x+ 5.



-1 3

2

0 5 −1

0 4
1 5 11

22
2 27

(c) Newton’s interpolation (using a divided differences table)

Solution: Hence

p(x) = 3 + 2(x+ 1)− x(x+ 1) + 4x(x+ 1)(x− 1)

Rearranging this, we get

p(x) = 4x3 − x2 − 3x+ 5

3. (10 points) A quadratic polynomial p(x) is used to approximate the function f(x) = ex

on the interval [−1, 1]. The interpolating polynomial passes through the points x =
−1, 0, 1

(a) Find the interpolating polynomial p(x).

Solution: We can use any of the three methods to figure out the interpolating
polynomial. For example, using Lagrange interpolation:

p(x) = e−1 x(x− 1)

(−1)(−2)
+ e0

(x+ 1)(x− 1)

(1)(−1)
+ e1

x(x+ 1)

(2)(1)

or

p(x) =
1

2e
x(x− 1)− (x+ 1)(x− 1) +

e

2
x(x+ 1) .

(b) Write down the expression for the interpolation error E(x) = |ex − p(x)|
Solution: The interpolation error when approximating f(x) by an interpolating
polynomial p(x) at points (x0, f(x0)), · · · (xn, f(xn)) is given by

f(x)− p(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0) · · · (x− xn)

for some ξ ∈ (x0, xn) In this case f(x) = ex, x0 = −1, x1 = 0, x2 = 1. Since n = 2,
we require f (3)(x) = ex.

|ex − p(x)| = ec

6
x(x+ 1)(x− 1)

for some c ∈ (−1, 1).



(c) Hence, find the maximum possible value of the interpolation error E(x) on the
interval [−1, 1].

Solution: We want to compute

max
x∈[−1,1]

|ex − p(x)| = max
x∈[−1,1]

|ec(x)|
6

x(x+ 1)(x− 1)

Th function ex is increasing on [−1, 1] so the maximum of ec(x) is e1 = e. It
remains to compute the maximum/minimum of ϕ(x) = x(x+ 1)(x− 1) = x3 − x
on the interval [−1, 1]. Since ϕ(−1) = ϕ(1) = 0 at the end-points, the maximum
or minumum must occur at a critical point.

ϕ′(x) = 3x2 − 1 = 0

has solutions at x = ± 1√
3
. Evaluating into ϕ(x) we get

ϕ(1/
√
3) = − 2

3
√
3

and

ϕ(−1/
√
3) =

2

3
√
3
.

Hence

max
x∈[−1,1]

|ex − p(x)| ≤ e

6
· 2

3
√
3
= 0.17438


