HMTHCS 212Assignment 1NameThis assignment is due on Wednesday July 6, 2022 by 6pm.

- 1. (20 points)
 - (a) Find a way to compute the following function to avoid loss of significant figures

$$f(x) = \frac{\sin(x)}{x - \sqrt{x^2 - 1}}$$

(b) For any $x_0 > -1$, the sequence defined recursively by

$$x_{n+1} = 2^{n+1} \left(\sqrt{1 + 2^{-n} x_n} - 1 \right), \quad n \ge 0$$

converges to $\ln(x_0 + 1)$. Arrange this formula in a way that avoids loss of significance.

(c) Calculate both roots of

$$3x^2 - 9^{14}x + 100 = 0$$

with 3 digit accuracy.

(d) Find a good way of computing

$$f(x) = \frac{e^{2x} - 1}{2x}$$

for x near zero.

- 2. (20 points)
 - (a) By forming a suitable function f(x), show that the graphs of $u(x) = \frac{x}{2}$ and $v(x) = \tan^{-1}(x)$ intersect at three points: $x = \alpha$ in the interval [2, 2.5], x = 0 and $x = -\alpha$.
 - (b) Perform 6 steps of the bisection method to estimate α .
 - (c) Find an interval $I \subset \mathbb{R}$ so that the fixed-point iteration $x_{n+1} = 2 \tan^{-1}(x_n)$ starting from any $x_0 \in I$ is guaranteed to converge to α
 - (d) Perform 6 steps of the fixed-point iteration to approximate α starting with $x_0 = 2$.
 - (e) Explain why the fixed-point iteration $x_{n+1} = 2 \tan^{-1}(x_n)$ is not guaranteed to converge to the root at x = 0.
 - (f) For what starting values x_0 does Newton's method fail to find the roots of f(x)?
- 3. (20 points)
 - (a) Verify that when Newton's method is used to compute $\sqrt[3]{a}$ (by solving the equation $x^3 = a$), the sequence of iterates is defined by

$$x_{n+1} = \frac{1}{3} \left(2x_n + \frac{a}{x_n^2} \right).$$

- (b) Perform three iterations of the scheme in part (a) for computing $\sqrt[3]{5}$, starting with $x_0 = 2$, and for the bisection method starting with the interval [1, 2]. How many iterations of the bisection method are required in order to obtain 10^{-6} accuracy?
- (c) Suppose $xe^x = 3$. By drawing suitable graphs, find a first approximation x_0 of the root of $xe^x = 3$ as the intersection of two graphs.
- (d) Hence use Newton's method to find the root of $xe^x = 3$ correct to 3 decimal places.
- (e) Explain what would happen if we were to choose $x_0 = -1$ as the first approximation in Newton's method for the root in (c).