
HMTHCS212 Numerical Methods
Block D, July 2022

University of Zimbabwe

Dr. Shelvean Kapita

Contents

1 Introduction 2

1.1 Loss of significance . 7

2 Roots of nonlinear equations 10

2.1 Bisection Method . 11

2.1.1 Convergence of bisection . 14

2.2 Fixed-Point Iteration . 16

2.2.1 Fixed-Point Theorem . 21

2.3 Newton’s Method . 21

2.3.1 Convergence of Newton’s Method 25

2.4 Secant Method . 26

3 Solution of Linear Systems 28

3.1 Gaussian Elimination . 30

3.2 LU Factorization . 35

3.2.1 LU factorization and solution of linear systems 36

3.2.2 Gaussian Elimination with Partial Pivoting 40

1

4 Iterative Methods for Solving Linear Systems 42

4.1 Jacobi Iteration . 42

4.2 Gauss-Seidel Iteration . 46

5 Polynomial Interpolation 49

5.1 Monomial Interpolation . 50

5.2 Lagrange Interpolation . 52

5.3 Newton form of the Interpolating Polynomial 55

5.4 Polynomial evaluation by nested multiplication 58

5.5 Errors in Polynomial Interpolation 59

6 Numerical Differentiation 62

6.1 Finite Difference Formulas . 62

7 Numerical Integration 68

7.1 Trapezoidal rule . 68

7.2 Simpson’s rule . 71

7.3 Gaussian quadrature . 74

8 Ordinary Differential Equations 79

8.1 Initial Value Problems . 79

8.2 Euler’s method . 80

8.3 Implicit Euler’s Method . 82

8.4 Modified Euler’s method . 83

8.5 Runge Kutta methods . 85

1 Introduction

Scientific computing may be defined as the discipline concerned with the devel-
opment and study of numerical algorithms for solving mathematical problems

2

arising from various disciplines such as science, finance, and engineering.

In most cases, the starting point is a mathematical model designed to un-
derstand an observed phenomenon in chemistry, biology, physics, engineering, eco-
nomics or any other discipline. We will focus on mathematical models that are con-
tinuous or piecewise continuous that are difficult to solve using analytical methods.
In order to solve such a problem on a computer, the continuous model is replaced
by a discrete one. Functions are replaced by array values. Algorithms are then
sought to solve the discrete approximations accurately and efficiently. Numerical
analysis is the study of the theory behind these algorithms.

The most fundamental feature of a numerical algorithm is the presence of error.
The result of a numerical computation is only approximate, and a major goal of
numerical analysis is to make sure that the error is tolerably small.

Relative and Absolute Errors

There are two main types of measured error. Suppose x is a scalar quantity
and xc is its approximation.

• absolute error : |x− xc|

• relative error : |x−xc|
|x| (assuming x ̸= 0).

Example: Let 3.14 be an approximation of π = 3.141592653589793.... Find the
absolute and relative errors of such an approximation to 6 significant figures.

Solution:

• absolute error = |π − 3.14| = 0.00159265

• relative error = |π−3.14|
|π| = 0.000506957

• percentage error = relative error ×100% = 0.0506957%.

If the measured quantity x ≈ 1, then there is not much difference between the
absolute and relative errors. But when |x| >> 1 the relative error is more mean-
ingful.

Types of Errors

3

x xc abs. error rel. error
1 0.99 0.01 0.01
1 1.01 0.01 0.01

-1.5 -1.2 0.3 0.2
100 99 1 0.01
100 99.99 0.01 0.0001

Table 1: Absolute and relative errors

1: Errors in the mathematical model: These are errors due to deliberate
simplication of a mathematical model in the description of a phenomenon to make
calculations tractable. For example planets are approximated by spheres, linear-
isation of a nonlinear phenomenon by neglecting higher order effects, or discarding
relatively unimportant chemical reactions in complex chemical modelling.

2: Errors in the input data: These errors arise due to physical measurements
which are never infinitely accurate, but are accurate up to some level of tolerance.
The height of a chair measured using a tape is accurate up to a few millimetres,
and the average radius of the earth can be estimated with an error up to a few kilo-
metres, for example. At the level of numerical algorithms, there is really nothing
one can do about modelling and input data errors mentioned above. Nevertheless,
these errors should be taken into consideration when assessing the accuracy of the
results of a numerical experiment to model a phenomenon.

3: Approximation errors: These errors arise when an approximate formula is
used in place of the actual function to be evaluated.

• Discretization errors arise from discretization of continuous processes, e.g.
replacing derivatives by difference formulas, integrals by Riemann sums, or
approximating functions by interpolating polynomials.

(i) f ′(x) =
f(x+ h)− f(x)

h
+ h

2
f ′′(ξ), for x < ξ < x+ h

(ii)
∫ x+h

x
f(s) ds =

h

2
(f(x) + f(x+ h)) − h3

12
f ′′(ξ), for x < ξ < x+ h

(iii) cos(x) = 1− x2

2
+ 1

6
x3 sin(ξ), for x near 0, 0 < ξ < x.

The boxed quantity is the discrete approximation. The remaining term,
containing (a generally unknown) ξ is the discretisation error.

4

• Convergence errors: Typically, nonlinear problems are solved using iter-
ative methods. Generally, an iterative process would converge to the exact
solution in infinitely many steps, but we stop the process after finitely many
steps. For example, to approximate

√
2 = 1.41421356237 · · · by hand one

may use the iterative formula

xn+1 =
1

2

(
xn +

2

xn

)
.

This formula is known as the Babylonian method for finding square roots. It
was known by the Babylonians (1500 BC), long before Newton generalized
it. Starting with the guess x0 = 1, we get

x1 =
1

2

(
1 +

2

1

)
=

3

2
= 1.5

x2 =
1

2

(
3

2
+

4

3

)
=

17

12
= 1.4166666 · · ·

x3 =
1

2

(
17

12
+

24

17

)
=

577

408
= 1.41421568627 · · ·

The convergence (absolute) errors are as follows:

|
√
2− x1| = 0.414213

|
√
2− x2| = 0.00245310

|
√
2− x3| = 0.000002139

Note that the iterates xn converge rapidly to
√
2 when n increases.

Roundoff errors: These arise from the finite representation of real numbers on
a computer. This finite representation of numbers affects both data and arithmetic
operations. For example, the fraction

2

3
= 0.66666666...

has a non-terminating decimal, which needs to be truncated at some point. In
some cases, the number is rounded up, for example

2

3
≈ 0.6666 · · · 667

introducing an additional source of error. Even if a number is represented exactly
on a computer, arithmetic operations such as addition, subtraction, multiplication
and division may introduce roundoff errors.

5

Let us investigate the effects of discretisation and roundoff errors in the ap-
proximation of the derivative f ′(x) of the function f(x) = ex at x = 0. Since
f ′(x) = ex, we know that f ′(0) = e0 = 1. Using the one-step forward difference
formula,

f ′(x) ≈ f(x+ h)− f(x)

h
,

with x = 0

f ′(0) ≈ eh − 1

h
.

The absolute error of the approximation, as we will show later, is in the region of
h/2.

Figure 1: Discretization and roundoff errors. The solid curve interpolates the
values of |e0 − (eh − 1)/h|. The dashed curve represents the discretization error
without roundoff error. For very small h when h < 10−8, roundoff error dominates
the discretization error.

MATLAB code for generating Fig 1

>> df = @ (x,h) (exp(x+h)-exp(x))./h;
>> x = 0;
>> h = 10.^(0:-1:-15)’;
>> abserror = abs(exp(x)-df(x,h));
>> discerror = h/2;
>> loglog(h,abserror,’o-’,h,discerror,’--’,’Linewidth’,2)
>> grid on; xlabel=(’h’); ylabel=(’Absolute error’)

6

1.1 Loss of significance

A major source of roundoff error, known as cancellation, results from the subtrac-
tion of nearly equal numbers. For example, when h < 10−8 in Fig 1, the quantity
eh is very close to 1, resulting in loss of significant figures when eh−1 is computed.
To overcome this, we need to find ways to avoid subtracting nearly equal quantit-
ies. In this example, we will use a Taylor series expansion. Recall the Taylor series
expansion. Suppose f(x) has k+1 derivatives in an interval containing the points
a and x := a+ h. Then

f(x) = f(a) + hf ′(a) +
h2

2
f ′′(a) + · · ·+ hk

k!
f (k)(a) +

hk+1

(k + 1)!
f (k+1)(ξ)

where ξ ∈ (a, a+ h).

Expanding eh in Taylor series around h = 0:

eh = 1 +
h

1!
+

h2

2!
+

h3

3!
+ · · · .

Subtracting 1, and dividing by h we see that

eh − 1

h
= 1 +

h

2
+

h2

6
+ · · ·

When h is small, e.g. h = 10−8, then h2 = 10−16 is much smaller than h, so that
terms h2 and higher can be omitted from the sum, and the difference formula is
accurately approximated by the linear term

eh − 1

h
≈ 1 +

h

2
.

Now observe that the approximation 1 + h
2

avoids subtraction of nearly equal
terms. The absolute error of the approximation of the derivative f ′(0) by the
linear function g(h) = 1 + h is then |1 − (1 + h/2)| = h/2 which is shown by the
dotted line in Fig 1 to converge even for very small values of h.

Example 1: Find
√
x+ 1−

√
x for x = 1016.

In MATLAB, the above calculation returns 0. This is because the quantities√
1016 + 1 and

√
1016 are almost equal, and their representations on the computer

are the same, so their difference is calculated as zero. To avoid this error, let us
use a trick from calculus called conjugate multiplication.

(
√
x+ 1−

√
x) ·

√
x+ 1 +

√
x√

x+ 1 +
√
x

=
(x+ 1)− x√
x+ 1 +

√
x

=
1√

x+ 1 +
√
x

7

Evaluating this expression at x = 1016 in MATLAB gives

1
√
1016 + 1 +

√
1016

= 5× 10−9,

a small, but nonzero number.

Example 2: Find both the roots of the quadratic equation x2+812x = 1 correct
to 5 significant figures.

It is well-known that the roots of the quadratic equation ax2 + bx+ c = 0 with
a ̸= 0 are given by the quadratic formula:

x =
−b±

√
b2 − 4ac

2a

Now setting a = 1, b = 812 and c = −1, we obtain the two roots

x1 =
−812 −

√
824 + 4

2
, x2 =

−812 +
√
824 + 4

2

Evaluating in MATLAB

x1 = −6.8719× 1010, x2 = 0.0

Notice that to compute x2 we subtract two nearly identical large numbers, resulting
in catastrophic cancellation. To avoid this error, let us rewrite the formula in a
new way. By conjugate multiplication,

−b+
√
b2 − 4ac

2a
=

(−b+
√
b2 − 4ac)

2a

(−b−
√
b2 − 4ac)

(−b−
√
b2 − 4ac)

=
b2 − (b2 − 4ac)

2a(−b−
√
b2 − 4ac)

=
4ac

2a(−b−
√
b2 − 4ac)

=
2c

−b−
√
b2 − 4ac

.

Computing x2 in MATLAB again using the new formula gives

x2 =
2

−812 −
√
824 + 4

≈ −1.4552× 10−11

a small but nonzero number.

8

Exercise 1: Consider the function f(x) = ln(1+x). Suppose that the derivative
f ′(x) at x = 0 is approximated by the forward difference formula f ′(0) ≈ f(h)−f(0)

h
.

For small values of h, significant roundoff error is observed. Use a Taylor series
expansion about h = 0 to find a linear approximation of f(h)−f(0)

h
. Explain why

the linear approximation avoids the roundoff errors.

Exercise 2: Prove the following identities. Identify the values of x for which
there is subtraction of nearly equal numbers. Which of the two formulas is more
suitable for numerical computation? Explain why.

(a) ln(x−
√
x2 − 1) = − ln(x+

√
x2 − 1)

(b) 1−sec(x)
tan2(x)

= −1
1+sec(x)

Exercise 3:

(a) Define f(x) = x2−x
√
x2 + 9. Calculate f(812) correct to 5 significant figures.

(b) Find both the roots of 3x2 − 914x+ 100 = 0 correct to 5 significant figures.

9

2 Roots of nonlinear equations

Equation solving is one of the most basic problems in scientific computing. This
chapter introduces a number of methods to solve the equation

f(x) = 0,

where x ∈ R is a real variable. Any real number r ∈ R satisfying f(r) = 0 is
called a root or a zero of the function f(x). We will assume that f is a continuous
function on an interval around the unknown solution. This condition is sufficient
to guarantee convergence of the Bisection Method. Newton’s method requires
additional knowledge of the derivative f ′(x). In some situations, the derivative may
be unavailable. In such a case, the Secant method which replaces the derivative
by a forward difference formula may be used. In this chapter, we will study all
three root-finding algorithms in terms of their rates of convergence and number of
iterations to reach a particular error level.

Example 1: Find all solutions of the equation ax+ b = 0, where a ̸= 0.

This is a linear equation in one variable whose solution is the x-intercept,
where the graph of the line crosses the x-axis. Algebraically, the solution is simply
x = −b/a.

Example 2: Find all solutions of the equation ax2 + bx+ c = 0, a ̸= 0.

This is a quadratic equation whose solutions in closed form are given by the
quadratic formula

x =
−b±

√
b2 − 4ac

2a

The number and kinds of solutions depend on the sign of the discriminant b2−4ac

• if b2 − 4ac > 0, the equation has two real roots

• if b2 − 4ac < 0, the equation has no real roots (it has two complex roots)

• if b2 − 4ac = 0, the equation has a repeated real root, x = −b/2a

Determining the real roots of a polynomial of degree three or four using closed
form formulas involving radicals is possible, though involved. For degrees five or
higher, it is impossible to find a solution of a general polynomial involving radicals.
This result is known as the Abel-Ruffini Theorem.

Example 3: Find all solutions of the equation sin(kx) = 0, for some real number
k ̸= 0

10

From the graph of sine, the roots are located at kx = nπ for any integer n.
Therefore,

x = nπ/k, n ∈ Z

generates all the solutions.

(a) Graph of f(x) = e−x and g(x) = cos(x). (b) Graph of h(x) = cos(x)− e−x.

Figure 2: The roots of h(x) = cos(x) − e−x are the points of intersection of the
graphs of g(x) = cos(x) and f(x) = e−x

Example 4: Find all roots of h(x) = cos(x)− e−x in the interval [−0.5, 1.5].

It is easy to see that e0 = cos(0) = 1 so that r = 0 is a solution of h(x) = 0.
The graph in Figure 2 suggests there is another root in the interval [1, 1.5]. We
find this root using the MATLAB function fzero

MATLAB fzero for finding roots of non-linear functions

>> f = @(x) cos(x)-exp(-x); % function
>> x0 = 1; % initial guess close to the presumed root
>> r = fzero(f, x0) % find root r

2.1 Bisection Method

In order to find a root, it is necessary to know that a root exists within a certain
interval. This can be done by bracketing the root. Suppose f(x) is a continuous
function, and that on a certain interval [a, b] the numbers {f(a), f(b)} have opposite
signs, then the graph of f(x) must cross the x-axis somewhere at some r such that
a < r < b. In other words if f(a)f(b) < 0 there exists an r in (a, b) with f(r) = 0.
This is known as the Intermediate Value Theorem in analysis.

11

Theorem (Intermediate Value Theorem): Let f be a continuous function on [a, b]
satisfying f(a)f(b) < 0. Then f has a root r between a and b such that a < r < b
and f(r) = 0.

The example below shows how to use the Intermediate Value Theorem to find
intervals containing roots.

Example 1: Show that f(x) = e−x cos(5x) has roots in the intervals [0.2, 0.4],
[0.8, 1.0] and [1.4, 1.6].

a b f(a) f(b) sign(f(a)f(b))
0.2 0.4 0.4424 -0.2790 –
0.8 1.0 -0.2937 0.1044 –
1.4 1.6 0.1859 -0.0294 –

Table 2: The function f(x) = e−x cos(5x) has three roots in the intervals [a, b]

Figure 3: Graph of f(x) = e−x cos(5x) depicting the roots.

To get better estimates of the roots, we need to “zoom" in at each root and
take smaller and smaller intervals. This can be done by the bisection algorithm.

12

Bisection algorithm:

Given an initial interval [a, b] such that f(a)f(b) < 0, tolerance tol
while (b− a)/2 > tol

c = (b+ a)/2
if f(c) = 0, stop, end
if f(a)f(c) < 0

b = c
else

a = c
end

end

We now describe the bisection algorithm. Once an interval bracketing a root
has been identified, the bisection algorithm is used to get a smaller and better
interval to estimate the value of the root.

Inputs

• f a function whose roots are to be estimated

• a, b with a < b for the interval [a, b] bracketing a root.

• tol> 0 desirable tolerance for the width of the final interval.

Bisection process

• first estimate the root by the midpoint c = (b+ a)/2

• if f(c) = 0, then we have found the root! The root is c

• otherwise f(a)f(c) < 0 or f(c)f(b) < 0

• if f(a)f(c) < 0, then the root is more to the left of the interval

• if the root is more to the left, change b to c, i.e. set b = c.

• otherwise if f(c)f(b) < 0, then the root is more to the right of the interval

• if the root is more to the right, change c to a, i.e. set a = c

• at this stage the interval is now half what we started with

• check now if width of the new interval (b− a)/2 <tol

13

• if the new width is bigger than tol repeat the steps above

• otherwise stop when (b− a)/2 <tol

Output

• estimated root c.

The above algorithm is robust and is guaranteed to converge to an approximate
root as long as

• f is continuous

• the interval [a, b] contains one root.

• f(a)f(b) < 0.

2.1.1 Convergence of bisection

How accurate and how fast is bisection? If [a, b] := [a0, b0] is the starting interval,
bisection produces a sequence of intervals [a0, b0] ⊃ [a1, b1] ⊃ · · · ⊃ [an, bn]. After
n steps of the bisection algorithm, the interval [an, bn] at step n has size (b−a)/2n.
The best estimate of the root after n-steps is the midpoint of the interval [an, bn],
i.e. cn = (bn + an)/2 = (b− a)/2n+1. This shows that the solution error is

bisection error = |cn − r| ≤ (b− a)

2n+1
.

At what cost? The cost of bisection algorithm is the number of function evaluations
required to arrive at cn. First, there are the 2 evaluations f(a) and f(b). Then at
each step, the evaluation of the midpoints ck, k = 1, · · · , n. So after n steps, there
are n+ 2 function evaluations.

bisection function evaluations = n+ 2.

14

Figure 4: Convergence of bisection, f(x) = x3 + x− 1 on the interval [0, 1]. Here
tol = 10−8 and r = 0.682327803828019. The dashed line is the maximum possible
error at each iteration. The solid line is the absolute error.

MATLAB code for Bisection

% nmax is the maximum number of iterations allowed
% f = @(x) x.^3+x-1;
% a = 0; b = 1;
% tol = 1e-8;
% nmax = 100;
function [r,iter,err] = bisection(f,a,b,tol,nmax)
iter = 0; % iteration count
err = zeros(1,nmax);
ex = fzero(f,b); % exact solution
while ((b-a)/2>tol) && (iter < nmax)

c = (b+a)/2;
if f(a)*f(c)<0

b = c;
else

a = c;
end
iter = iter + 1;
err(iter) = abs(c - ex);

end
r = c; % approximate root
err = err(1:iter); % errors

15

n cn f(cn) error
0 0.500000000000000 -0.375000000000000 0.182327803828019
1 0.750000000000000 0.171875000000000 0.067672196171981
2 0.625000000000000 -0.130859375000000 0.057327803828019
3 0.687500000000000 0.012451171875000 0.005172196171981
4 0.656250000000000 -0.061126708984375 0.026077803828019
...

...
...

...
23 0.682327866554260 1.50336848747656e-07 6.27262408681162e-08
24 0.682327806949615 7.48157225061163e-09 3.12159609272555e-09
25 0.682327777147293 -6.39460605578179e-08 2.66807262949698e-08
26 0.68232779204845 -2.82322445421812e-08 1.17795651011221e-08

Table 3: Convergence of bisection method for f(x) = x3 + x− 1 on [0, 1]

Example: Use the Bisection method to find solutions accurate to within 10−2

for the function x− 2−x = 0 on the interval [0, 1].

A solution is accurate to within p decimal places if the error is less than 0.5×10−p.
In this case, the error is less than 0.5 × 10−2 = 0.005. First, let’s determine how
many steps are required by the bisection method. Recall the error formula

b− a

2n+1
< 0.5× 10−2.

To solve for n with a = 0, b = 1, take natural log on both sides

ln

(
1− 0

2n+1

)
< ln(0.005) (1)

ln(1)− ln(2n+1) < ln(0.005) (2)
−(n+ 1) ln(2) < ln(0.005) (3)

−(n+ 1) < ln(0.005)/ ln(2) ≈ −7.64 (4)
n > 6.64 (5)

The minimum number of iterations is n = 7.

2.2 Fixed-Point Iteration

A number p is called a fixed point of a function g if g(p) = p. In this section,
we consider the problem of finding solutions to fixed point problems. Our aim
is to solve equations of the form f(x) = 0, but in some instances, it may be
advantageous to solve an equivalent fixed point problem instead.

16

n an bn cn sign(f(an))sign(f(cn)) sign(f(cn))sign(f(bn))
0 0.0 1.0 0.5 + -
1 0.5 1.0 0.75 - +
2 0.5 0.75 0.625 + -
3 0.625 0.75 0.6875 - +
4 0.625 0.6875 0.65625 - +
5 0.625 0.65625 0.640625 + -
6 0.640625 0.65625 0.6484375 - +
7 0.640625 0.6484375 0.64453125 - +
8 0.640625 0.64453125 0.642573125

Table 4: The solution of x− 2−x = 0 is 0.64 to 2 decimal digits after 7 iterations.

• the equation f(x) = 0 is equivalent to g(x) = x− f(x) or g(x) = x + 4f(x)
in the sense that if p is a root of f , then f(p) = 0. Thus g(p) = p− f(p) = p
or g(p) = p+ 4f(p) = p, etc. So that p is also a fixed point of g(x).

• if p is a fixed point of g(x), then the function defined by f(x) = x− g(x) has
a root at p.

The following Theorem provides sufficient conditions for the existence and
uniqueness of a fixed point.

Theorem: (Existence and Uniqueness of Fixed Points)

(i) If g is continuous on [a, b] and g(x) ∈ [a, b] for all x ∈ [a, b], then g has at
least one fixed point in [a, b]

(ii) If, in addition, g′(x) exists on (a, b) and a positive constant k < 1 exists with

|g′(x) ≤ k, for all x ∈ (a, b),

then there is exactly one fixed point in [a, b].

Exercise 1: Determine any fixed points of the function g(x) = x2 − 2.

The fixed points of g are characterised by

g(x) = x2 − 2 = x.

This equivalent to
x2 − x− 2 = (x+ 1)(x− 2) = 0.

17

So g has two fixed points p = −1 and p = 2. These are the points of intersection
of the graph of g with the line y = x.

Exercise 2: Show that each of the following functions has a fixed point precisely
when f(p) = 0 where f(x) = x4 + 2x2 − x− 3.

(a) g1(x) = (3 + x− 2x2)1/4

x4 + 2x2 − x− 3 = 0

x4 = 3 + x− 2x2

x = (3 + x− 2x2)1/4

(b) g2(x) =
(

x+3−x4

2

)1/2

(c) g3(x) =
(

x+3
x2+2

)
(d) g4(x) =

3x4+2x2+3
4x3+4x+3

Hint: g(x) = x− αf(x) with α = 1/f ′(x)

Exercise 3: Find the fixed points of g(x) = 2−x.

The fixed points of g(x) = 2−x are the solutions of the equation x − 2−x = 0.
These solutions cannot be determined in closed form. We can apply the fixed
point iteration to find an approximate solution as follows

Fixed Point Iteration

Choose an initial guess p0
pi+1 = g(pi) for i = 0, 1, 2, 3, · · ·

That is,

p1 = g(p0)

p2 = g(p1) = g(g(p0)))

p3 = g(p2) = g(g(g(p0)))
...

18

MATLAB code for Fixed-Point Iteration

% MATLAB code for Fixed Point Iteration
function [pc, iter] = fpi(g,p0,tol,nmax)
p = zeros(1,nmax);
p(1) = p0;
i = 1;
res = 1;
while (i < nmax)&& (res > tol)

p(i+1)=g(p(i));
res = abs(p(i+1)-p(i));
i = i+1;

end
pc = p(i);
iter = i;

Figure 5: The fixed point of g(x) = 2−x is the point of intersection of the graph of
y = g(x) with the line y = x

If the sequence pi converges to a number, p, and g is continuous, then fixed
point iteration converges to a fixed point of g. To see this, note

g(p) = g
(
lim
i→∞

pi

)
= lim

i→∞
g(pi) = lim

i→∞
pi+1 = p

Exercise 4: Determine the first 8 iterates of the fixed point iteration applied to
g(x) = 2−x starting with x0 = 1.

19

n xi g(xi) error
0 1.000000000000000 0.500000000000000 0.141185744504986
1 0.500000000000000 0.707106781186547 0.0659210366815615
2 0.707106781186547 0.612547326536066 0.0286384179689201
3 0.612547326536066 0.65404086004207 0.0128551155370835
4 0.654040866004207 0.635497845813374 0.00568789869161224
5 0.635497845813374 0.643718641722869 0.00253289721788308
6 0.643718641722869 0.64006102117724 0.00112472332774627
7 0.64006102117724 0.641685807042998 0.000500062538012269
8 0.641685807042998 0.640963537177963 0.000222207327022828

Table 5: Convergence of fixed point iteration for g(x) = 2−x with starting point
x0 = 1.0

The fixed point of g is also the root of f(x) = x − 2−x which is 0.64... from
Table 4.

Exercise 5: Perform 6 iterations of the fixed point iteration on g1, · · · , g4 from
Exercise 2. Recall

g1(x) = (3 + x− 2x2)1/4, g2(x) =

(
x+ 3− x4

2

)1/2

g3 =
x+ 3

x2 + 2
, g4(x) =

3x4 + 2x2 + 3

4x3 + 4x− 1

n g1(x) g2 g3 g4
0 1.000000000000000 1.000000000000000 1.000000000000000 1.000000000000000
1 1.18920711500272 1.22474487139159 1.33333333333333 1.14285714285714
2 1.08005775266756 0.993666159077482 1.14705882352941 1.1244816900179
3 1.14967143058938 1.22856864527499 1.25071745369163 1.12412316394015
4 1.10782052951026 0.987506429150887 1.19258323697031 1.12412302970433
5 1.13393228450473 1.23218341831881 1.22509383726244 1.12412302970432
6 1.11800311771578 0.981585828612739 1.206874876498 1.12412302970432

Table 6: Convergence of fixed point iteration for different functions g1, · · · , g4
corresponding to the roots of f(x) = x4 +2x2 − x− 3. The function g4 appears to
give the best approximation to the solution.

20

2.2.1 Fixed-Point Theorem

How should we select a function so that fixed point iteration converges reliably
and rapidly? The following Theorem provides clues.

Fixed-Point Theorem: Let g be a continuous function on [a, b] satisfying
g(x) ∈ [a, b] for all x ∈ [a, b]. Suppose that g′ exists on (a, b) and there exists a
constant 0 < k < 1 such that

|g′(x)| ≤ k, for all x ∈ (a, b).

Then for any number p0 ∈ [a, b] the sequence defined by

pn+1 = g(pn), n ≥ 0

converges to the unique fixed point p in [a, b].

Exercise 6: Show that g(x) = 2−x has a unique fixed point in [0, 1].

Since g′(x) = −2−x ln(2) < 0 on [0, 1] it follows that g(x) is decreasing on [0, 1].
So

g(1) = 0.5 ≤ g(x) ≤ g(0) = 1.

Hence g(x) ∈ [0, 1]. Also

|g′(x)| = |2−x ln 2| ≤ ln 2 = 0.6931 < 1.

So |g′(x)| < 1 on (0, 1). Then by the Fixed Point Theorem, for any number
p0 ∈ [0, 1] the sequence

pn+1 = 2−pn , n ≥ 0

converges to a unique fixed point p = 0.6411857445... in [0, 1].

2.3 Newton’s Method

Newton’s Method (sometimes called Newton-Raphson) is one of the most powerful
and well-known methods for solving a root-finding problem. Suppose we want to
determine a root p such that f(p) = 0. To derive Newton’s method, we make the
following assumptions

• f ∈ C2[a, b], i.e. f is twice differentiable and f ′′(x) is bounded for all x ∈
(a, b)

• there exists p0 ∈ [a, b] such that |p − p0| is small (p0 is sufficiently close to
the root p)

21

• and f ′(p0) ̸= 0

Consider the Taylor polynomial of f(x) expanded around p0 and evaluated at
x = p

f(p) = f(p0) + (p− p0)f
′(p0) +

(p− p0)
2

2
f ′′(ξ)

where ξ lies between p and p0.

Since p is a root of f , it follows that f(p) = 0. So that the equation above
becomes

0 = f(p0) + (p− p0)f
′(p0) +

(p− p0)
2

2
f ′′(ξ).

By assumption |p− p0| is small, so that (p− p0)
2/2 is even smaller. Hence,

0 ≈ f(p0) + (p− p0)f
′(p0).

Solving for p, we get

p ≈ p0 −
f(p0)

f ′(p0)
:= p1.

Expanding p around p1, we obtain p2, etc. Continuing in this fashion, we generate
a sequence {pn}∞n=0 by

pn+1 = pn −
f(pn)

f ′(pn)
, for n ≥ 0,

provided that f ′(pn) ̸= 0 for any n ≥ 0.

Figure 6: Graphical interpretation of Newton’s method

22

n xn |xn − r|
0 1.000000000000000 0.358814255495014
1 0.628687207584368 0.012498536920618
2 0.641169034642714 0.000016709862272
3 0.641185744475211 0.000000000029775
4 0.641185744504986 0.000000000000000

Table 7: Convergence of Newton’s method for the function f(x) = x− 2−x.

MATLAB code for Newton’s Method

function [r,iter] = newton(f,fp,p0,tol,nmax)
% f is the function
% fp is the derivative of f
% p0 is the initial iterate
% tol is the maximum tolerance, e.g. 1e-9
% nmax is the maximum number of iterations
res = 1; % residual
i = 1;
p = zeros(1,nmax);
p(1) = p0;
while (res>tol)&&(i <nmax)

p(i+1) = p(i)-(f(p(i))/fp(p(i)));
res = abs(p(i+1)-p(i));
i = i+1;

end
r = p(1:i);
iter = i;

Exercise: Use Newton’s method to find p1, p2 and p3 for the equation f(x) =
x3 + x− 1 = 0 with a starting point p0 = 1.

23

The derivative of f is f ′(x) = 3x2 + 1. Newton’s method is

pn+1 = pn −
f(pn)

f ′(pn)

= pn −
p3n + pn − 1

3p2n + 1

=
3p3n + pn − (p3n + pn − 1)

3p2n + 1

=
2p3n + 1

3p2n + 1

Hence,

p1 =
2(13) + 1

3(12) + 1
=

3

4
= 0.75

p2 =
2(3/4)3 + 1)

3(3/4)2 + 1
=

118

172
= 0.686046511627907

p3 =
2(118/172)3 + 1

3(118/172)2 + 1
= 0.682339582597314.

Exercise: Use Newton’s method to approximate
√
2 to 5 decimal places.

The function f(x) = x2 − 2 has roots at ±
√
2. Applying Newton’s method to

f , we get

pn+1 = pn −
p2n − 2

2pn
=

2p2n − (p2n − 2)

2pn
=

p2n + 2

2pn
=

1

2

(
pn +

2

pn

)

This is Heron’s formula for approximating
√
2. Let p0 = 1.

p1 =
1

2

(
1 +

2

1

)
=

3

2
= 1.5

p2 =
1

2

(
3

2
+

4

3

)
=

17

12
= 1.4166666 · · ·

p3 =
1

2

(
17

12
+

24

17

)
=

577

408
= 1.41421568627 · · ·

p4 = =
1

2

(
577

408
+

816

577

)
= 1.414213562374690

Hence
√
2 ≈ 1.41421 to 5 decimal places.

24

2.3.1 Convergence of Newton’s Method

The examples above show that Newton’s method converges remarkably quickly.
For example, in Table 7, we start off with no correct digits at all, then successive
iterations yield 2, 4, 9 and 15 correct digits. We observe a doubling of the number of
correct digits per iteration. In many cases, Newton’s method converges to machine
precision in 5 or 6 iterations. This doubling of the number of correct digits per
iteration is known as quadratic convergence.

Formally, a sequence of real numbers {pn} converges quadratically to a
number p if successive steps obey the inequality

|p− pn+1| ≤ C|p− pn|2

Figure 7: Failures of Newton’s method can be avoided by a careful choice of initial
iterate.

Theorem: (Newton’s Method) Suppose f, f ′ and f ′′ are continuous in a
neighbourhood of a root p of f , and that f ′(p) ̸= 0. Then there exists δ > 0 such
that if |p−p0| ≤ δ then all subsequent iterates pn, satisfy |p−pn| ≤ δ for all n ≥ 1
and converge quadratically to p, that is

|p− pn+1| ≤ C|p− pn|2

for some C > 0 depending on δ.

25

2.4 Secant Method

A major drawback of Newton’s method is that the algorithm requires knowledge
of the derivative of f . The Secant method replaces the derivative f ′(x) with a
difference formula. Recall the difference approximation:

f ′(x) ≈ f(x+ h)− f(x)

h

Setting x = pn, and h = pn−1 − pn, we obtain the approximation

f ′(pn) ≈
f(pn−1)− f(pn)

pn−1 − pn
.

Replacing the above into Newton’s formula yields the secant method

pn+1 = pn −
(

pn−1 − pn
f(pn−1)− f(pn)

)
f(pn).

Note that pn+1 depends on two previous values pn and pn−1, so to start the secant
method, we require p0 and p1.

Figure 8: Interpretation of the secant method. f ′(x) is approximated by a secant
line.

Convergence of the Secant method

26

It can be shown that the basic secant method converges with a rate α =
1
2
(1 +

√
5) ≈ 1.62. That is, if r is a root, and {pn}, n ≥ 1 are the iterates

generated by the secant method, then there exists C > 0 such that

|r − pn+1| ≤ C|r − pn|α.

Since α > 1, the convergence is said to be superlinear. In general, the speed
of convergence of the secant method is between that of bisection and Newton’s
method.

MATLAB code for the Secant Method

function [r,iter] = secant(f,p0,p1,tol,nmax)
p = zeros(1,nmax);
p(1) = p0;
p(2) = p1;
i = 2;
res = 1;
while (res>tol)&&(i<nmax)

p(i+1) = p(i)-f(p(i))*(p(i-1)-p(i))/(f(p(i-1))-f(p(i)));
res = abs(p(i+1)-p(i));
i = i+1;

end
r = p(1:i); % vector of iterates
iter = i; % number of iterations

n pn |pn − r|
0 1.000000000000000 0.317672196171982
1 0.500000000000000 0.182327803828018
2 0.646446609406726 0.005260864901740
3 0.641266292863391 0.000080548358405
4 0.641185699347306 0.000000045157680
5 0.641185744505374 0.000000000000388
6 0.641185744504986 0.000000000000000

Table 8: Convergence of the Secant method for f(x) = x − 2−x with p0 = 1 and
p1 = 0.5. The secant method is in general faster than bisection but slower than
Newton’s method.

27

3 Solution of Linear Systems

In this chapter, we will consider methods for solving matrix systems of the form
Ax = b where A is a matrix of size n × n and b is a vector of size n for an
unknown vector x of size n. The numerical solution of linear systems, also called
numerical linear algebra, is a central problem of numerical analysis. Many
numerical problems, for example solving differential equations, ultimately lead to
a solution of large linear systems. For example, discretizing a differential equation
may lead to a linear system of size 10, 000 by 10, 000 or larger, and it is impossible
to solve such a system by hand. Standard methods of solving linear equations that
involve computing the determinant and cofactors become prohibitively expensive
for large n. In this section, we will learn several algorithms for solving large linear
systems reliably and inexpensively.

Example: Solve the linear system

x+ 2y = −1

2x+ 3y = 1

This is a system of simultaneous equations in x and y. One way to solve this
system is, for example, to solve for x in the first equation

x = −1− 2y

and then substitute into the second equation

2(−1− 2y) + 3y = 1

−2− 4y + 3y = 1

−2− y = 1

y = −3.

Now substituting y back into the first equation gives x = −1− 2(−3) = 5. Hence
the system has solution x = 5, y = −3.

If the number of variables is large, then solving linear equations this way be-
comes cumbersome. To overcome this problem, let us write the system in matrix-
vector form. (

1 2
2 3

)(
x
y

)
=

(
−1
1

)
We will introduce the following notation:

A =

(
1 2
2 3

)
, x =

(
x
y

)
, and b =

(
−1
1

)
.

28

Then the matrix system can be written compactly as Ax = b.

The solution of the matrix equation is then x = A−1b where A−1 is the inverse
of the matrix A. This shows that the matrix equation can be solved by determining
A−1 followed by a matrix multiplication by the vector b. Recall from linear algebra

that the inverse of a 2× 2 matrix A =

(
a b
c d

)
is given by

A−1 =
1

det(A)
adj(A) =

1

ad− bc

(
d −b
−c a

)
.

Here ad− bc = det(A) is the determinant of A, and
(

d −b
−c a

)
= adj(A) is the

adjoint matrix of A.

Given A =

(
1 2
2 3

)
we have det(A) = 1 · 3− 2 · 2 = −1, and

A−1 =
1

−1

(
3 −2
−2 1

)
=

(
−3 2
2 −1

)
.

Hence (
x
y

)
=

(
−3 2
2 −1

)(
−1
1

)
=

(
5
−3

)
.

This method of solving linear systems by computing the determinant becomes
expensive for large values of n. The formula for the determinant of an n×n matrix
involves n! terms. For example, if n = 10 then the number of terms required to be
computed is 10! = 3, 628, 800. Let us consider less expensive methods for solving
linear systems.

Example: Solve the following linear system
1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5

x1

x2

x3

x4

x5

 =

1
0
2
1
3

A is a diagonal matrix since the only non-zero terms are the diagonal ones. This
system is particularly easy to solve. The solution is

x1 = 1, x2 = 0, x3 = 2/3, x4 = 1/4, x5 = 3/5.

29

Example: Solve the linear system

3x− 4y + 5z = 2

3y − 4z = −1

5z = 5

From the last equation, we see that z = 1. Substituting into the second equation,
3y − 4(1) = −1, we solve for y to get y = 1. Finally, we solve for x from the first
equation 3x − 4(1) + 5(1) = 2. That is x = 1/3. This solution process is called
back substitution because the equations are solved from the bottom up.

In matrix-vector form, the system above is as follows:3 −4 5
0 3 −4
0 0 5

x
y
z

 =

 2
−1
5

The matrix A =

3 −4 5
0 3 −4
0 0 5

 is called upper triangular since the non-zero

entries of A form a triangle on and above the diagonal. A matrix is lower tri-
angular if all the non-zero entries are on and below the diagonal. The example
above shows that solving an upper or lower triangular matrix is relatively easy.

3.1 Gaussian Elimination

Gaussian elimination is an efficient way of computing the solution of a system of
n equations in n unknowns. Three operations can be applied to a linear system to
yield an equivalent system without changing the solutions.

(i) interchange one equation for another

(ii) add or subtract a multiple of one equation from another

(iii) multiply an equation by a nonzero constant

These three operations can be applied to a linear system to yield an equivalent
system that is upper triangular and hence easier to solve using back substitution.

30

Example: Apply Gaussian elimination to solve

6x1 − 2x2 + 2x3 + 4x4 = 16

12x1 − 8x2 + 6x3 + 10x4 = 26

3x1 − 13x2 + 9x3 + 3x4 = −19

−6x1 + 4x2 + x3 − 18x4 = −34

In the first step, multiples of the first equation are subtracted from the second,
third, and forth equations to eliminate x1 from these equations.

(1) Multiply the first equation by 2

2 · [6x1 − 2x2 + 2x3 + 4x4 = 16] = 12x1 − 4x2 + 4x3 + 8x4 = 32

and subtract the result from the second equation

−4x2 + 2x3 + 2x4 = −6.

Multiply the first equation by 1
2

1

2
· [6x1 − 2x2 + 2x3 + 4x4 = 16] = 3x1 − x2 + x3 + 2x4 = 8

and substract the result from the third equation

−12x2 + 8x3 + x4 = −27.

Finally, add the first equation to the fourth

2x2 + 3x3 − 14x4 = −18.

The resulting linear system is

6x1 − 2x2 + 2x3 + 4x4 = 16

−4x2 + 2x3 + 2x4 = −6

−12x2 + 8x3 + x4 = −27

2x2 + 3x3 − 14x4 = −18

(2) To eliminate x2 from equations 3 and 4, multiply the second equation above
by 3

3 · [−4x2 + 2x3 + 2x4 = −6] = −12x2 + 6x3 + 6x4 = −18

31

and subtract the result from the third equation

2x3 − 5x4 = −9.

Multiply the last equation by 2

4x2 + 6x3 − 28x4 = −36

and add the result to the second equation

8x3 − 26x4 = −42.

The resultant system is as follows:

6x1 − 2x2 + 2x3 + 4x4 = 16

−4x2 + 2x3 + 2x4 = −6

2x3 − 5x4 = −9

8x3 − 26x4 = −42

(3) To eliminate x3 from the last equation, multiply the third equation by 4

4 · [2x3 − 5x4 = −9] = 8x3 − 20x4 = −36

and subtract from the last equation to get

−6x3 = −6

. The resulant system is

6x1 − 2x2 + 2x3 + 4x4 = 16

−4x2 + 2x3 + 2x4 = −6

2x3 − 5x4 = −9

−6x3 = −6

(4) This completes the first step of forward elimination. The next step is
backward substitution. Starting from the last equation

x4 =
−6

−6
= 1.

Taking x4 = 1, solve for x3 from the third equation

2x3 − 5 = −9,

32

hence
x3 =

−9 + 5

2
= −2.

Taking x3 = −2 and x4 = 1, solve for x2 from the second equation

−4x2 + 2 · −2 + 2 · 1 = −6,

so that
x2 = 1.

Finally, substituting x2 = 1, x3 = −2 and x4 = 1 into the first equation

6x1 − 2 · 1 + 2 · −2 + 4 · 1 = 16.

Solving for x1 yields
x1 = 3.

The solution is
x1 = 3, x2 = 1, x3 = −2, and x4 = 1.

Check in MATLAB.

>> A = [6,-2,2,4; 12, -8, 6, 10; 3,-13,9,3; -6,4,1,-18];
>> b = [16; 26; -19; -34];
>> x = A\b % solve by backslash
x =

3
1
-2
1

The same elimination can work without carrying variables by using the tableau
form:

6 −2 2 4 | 16
12 −8 6 10 | 26
3 −13 9 3 | −19
−6 4 1 −18 | −34

 R2−2R1−−−−−→

6 −2 2 4 | −16
0 −4 2 2 | −6
3 −13 9 3 | −19
−6 4 1 −18 | −34

6 −2 2 4 | 16
0 −4 2 2 | −6
3 −13 9 3 | −19
−6 4 1 −18 | −34

 R3− 1
2
R1

−−−−−→

6 −2 2 4 | 16
0 −4 2 2 | −6
0 −12 8 1 | −27
−6 4 1 −18 | −34

33

6 −2 2 4 | 16
0 −4 2 2 | −6
0 −12 8 1 | −27
−6 4 1 −18 | −34

 R4+R1−−−−→

6 −2 2 4 | 16
0 −4 2 2 | −6
0 −12 8 1 | −27
0 2 3 −14 | −18

6 −2 2 4 | 16
0 −4 2 2 | −6
0 −12 8 1 | −27
0 2 3 −14 | −18

 R3−3R2−−−−−→

6 −2 2 4 | 16
0 −4 2 2 | −6
0 0 2 −5 | −9
0 2 3 −14 | −18

6 −2 2 4 | 16
0 −4 2 2 | −6
0 0 2 −5 | −9
0 2 3 −14 | −18

 R4+ 1
2
R2

−−−−−→

6 −2 2 4 | 16
0 −4 2 2 | −6
0 0 2 −5 | −9
0 0 4 −13 | −21

6 −2 2 4 | 16
0 −4 2 2 | −6
0 0 2 −5 | −9
0 0 4 −13 | −21

 R4−2R3−−−−−→

6 −2 2 4 | 16
0 −4 2 2 | −6
0 0 2 −5 | −9
0 0 0 −3 | −3

Returning to the equations

6x1 − 2x2 + 2x3 + 4x4 = 16

−4x2 + 2x3 + 2x4 = −6

2x3 − 5x4 = −9

−3x4 = −3

By back substitution,

x4 =
−3

−3
= 1

2x3 − 5 = −9 =⇒ x3 = −2

−4x2 + 2 · −2 + 2 · 1 = −6 =⇒ x2 = 1

6x1 − 2 · 1 + 2 · −2 + 4 · 1 = 16 =⇒ x1 = 3.

That is
x1 = 3, x2 = 1, x3 = −2, x4 = 1.

34

3.2 LU Factorization

The LU factorization is a matrix representation of Gaussian elimination.

A = LU

where U is the upper triangular matrix obtained from the Gaussian elimination
process, and L is a lower triangular matrix.

Example: Find the LU factorisation of the matrix A =

(
1 2
2 3

)
. The elimination

steps proceed as follows (
1 2
2 3

)
R2−2R1−−−−−→

(
1 2
0 −1

)
= U

Define L to be the lower triangular matrix with 1’s on the diagonal, and the
multiplier 2 in the (2, 1) location

L =

(
1 0
2 1

)
Let us check if A = LU

LU =

(
1 0
2 1

)(
1 2
0 −1

)
=

(
1 2
2 3

)
= A.

Example: Find the LU factorization of

A =

6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18

The upper triangular matrix obtained by Gaussian elimination is

U =

6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3

The lower triangular matrix L is obtained by placing 1’s on the diagonal and the
multipliers in the lower triangle

L =

1 0 0 0
2 1 0 0
1
2

3 1 0
−1 −1

2
2 1

35

3.2.1 LU factorization and solution of linear systems

We can use the LU factorization to solve a linear system Ax = b using the following
steps

(i) Solve Ly = b for y

(ii) Use y from step (i) to solve Ux = y for x.

This follows from Ax = b =⇒ LUx = b =⇒ L(Ux) = b. Hence Ly = b if
Ux = y.

Exercise: Use an LU factorization to solve the linear system

x1 + 2x2 = −1

2x1 + 3x2 = 1

In matrix form Ax = b, with x = (x1, x2)(
1 2
2 3

)(
x1

x2

)
=

(
−1
1

)
The LU factorization of A is(

1 2
2 3

)
=

(
1 0
2 1

)(
1 2
0 −1

)
(i) Solve Ly = b for y := (y1, y2)(

1 0
2 1

)(
y1
y2

)
=

(
−1
1

)

We get y1 = −1 and 2 · −1 + y2 = 1 =−→ y2 = 3. So y =

(
−1
3

)
(ii) Solve for x in Ux = y (

1 2
0 −1

)(
x1

x2

)
=

(
−1
3

)

36

The solutions are x2 = −3 and x1 + 2 · −3 = −1 or x1 = 5. That is x =

(
5
−3

)
Exercise: Use an LU factorization to solve the linear system

6x1 − 2x2 + 2x3 + 4x4 = 16

12x1 − 8x2 + 6x3 + 10x4 = 26

3x1 − 13x2 + 9x3 + 3x4 = −19

−6x1 + 4x2 + x3 − 18x4 = −34

Recall that the LU factorization of the above system is

A =

6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18

 =

1 0 0 0
2 1 0 0
1
2

3 1 0
−1 −1

2
2 1

6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3

(i) Solve Ly = b for y = (y1, y2, y3, y4)

1 0 0 0
2 1 0 0
1
2

3 1 0
−1 −1

2
2 1

y1
y2
y3
y4

 =

16
26
−19
−34

y1 = 16, 2 · 16 + y2 = 26 =⇒ y2 = −6,

1

2
· 16 + 3 · −6 + y3 − 19 =⇒ y3 = −9

−16−
(
1

2
· −6

)
+ 2 · −9 + y4 = −34 =⇒ y4 = −3.

That is
y = (16,−6, 9,−3)

(ii) Solve for x in Ux = y
6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3

x1

x2

x3

x4

 =

16
−6
−9
−3

Solving for x = (x1, x2, x3, x4)

x1 = 3, x2 = 1, x3 = −2, x4 = 1.

37

MATLAB code for Naive Gaussian Elimination

function x = gauss_elim(A,b)
% naive Gaussian elimination
% A is an n by n matrix
% b is an n vector
% solves Ax = b
n = size(A,1);
for j=1:n-1

if abs(A(j,j))<eps
error(’zero pivot encountered’);

end
for i = j+1:n

mult = A(i,j)/A(j,j);
for k = j:n

A(i,k) = A(i,k)-mult*A(j,k);
end
b(i) = b(i)-mult*b(j);

end
end
% back substitution
x = zeros(n,1);
for i = n:-1:1

for j=i+1:n
b(i)=b(i)-A(i,j)*x(j);

end
x(i)=b(i)/A(i,i);

end

Failures of Naive Gaussian Elimination

The process of Gaussian elimination cannot be applied unchanged to all nonsin-
gular matrices.

(i) Consider the system

0x1 + x2 = 1

x1 + x2 = 2

The system matrix is A =

(
0 1
1 1

)
. Gaussian elimination applied to A

breaks down immediately since a11 = 0. A remedy for this is to interchange

38

the rows, while remembering to interchange the values of the right hand side
vector.

x1 + x2 = 2

0x1 + x2 = 1

Then (
1 1
0 1

)(
x1

x2

)
=

(
2
1

)
can be solved by Gaussian elimination.

(ii) Let ε be a very small number (e.g. ε = 10−20). Let us apply Gaussian
elimination to the system

εx1 + x2 = 1

x1 + x2 = 2

Multiplying the first equation by 1/ε and subtracting from the second, we
obtain

εx1 + x2 = 1

(1− ε−1)x2 = 2− ε−1

In the back substitution phase,

x2 =
2− ε−1

1− ε−1
≈ 1, x1 = ε−1(1− x2) ≈ 0.

Since ε−1 = 1020 is very large, both 2− ε−1 and 1− ε−1 will be represented
by the same number −ε−1. For very small values of ε, the computer will
calculate

x2 ≈ 1, x1 ≈ 0.

The actual solution of the system is

x2 = 2− x1 =⇒ εx1 + (2− x1) = 1 =⇒ x1 =
−1

ε− 1
≈ 1

and
x2 ≈ 1.

39

Now let us interchange the rows and apply Gaussian elimination

x1 + x2 = 2

εx1 + x2 = 1

Multiplying the first equation by ε and subtracting from the second,

x1 + x2 = 2

(1− ε)x2 = 1− 2ε

Using back substitution,

x2 =
1− 2ε

1− ε
≈ 1, x1 = 2− x2 ≈ 1.

This is a good approximation of the exact solution.

3.2.2 Gaussian Elimination with Partial Pivoting

The first step is to compare numbers in the first column before carrying out the
elimination step. The largest entry in the first column is located and its row is
swapped with the first row. The same check is applied for every choice of pivot
during the elimination. This is called Gaussian elimination with partial pivoting.

Exercise: Apply Gaussian elimination with partial pivoting to solve

6x1 − 2x2 + 2x3 + 4x4 = 16

12x1 − 8x2 + 6x3 + 10x4 = 26

3x1 − 13x2 + 9x3 + 3x4 = −19

−6x1 + 4x2 + x3 − 18x4 = −34

Let us write the system in tableau form

6 −2 2 4 | 16
12 −8 6 10 | 26
3 −13 9 3 | −19
−6 4 1 −18 | −34

40

The first column has coefficients 6, 12, 3,−6 . The second column has the
largest number in absolute value, hence interchange rows 1 and 2, and carry out
elimination

12 −8 6 10 | 26
6 −2 2 4 | 16
3 −13 9 3 | −19
−6 4 1 −18 | −34

 R2− 1
2
R1

−−−−−→

12 −8 6 10 | 26
0 2 −1 −1 | 3
3 −13 9 3 | −19
−6 4 1 −18 | −34

12 −8 6 10 | 26
0 2 −1 −1 | 3
3 −13 9 3 | −19
−6 4 1 −18 | −34

 R3− 1
4
R1

−−−−−→

12 −8 6 10 | 26
0 2 −1 −1 | 3
0 −11 15

2
1
2

| −51
2

−6 4 1 −18 | −34

12 −8 6 10 | 26
0 2 −1 −1 | 3
0 −11 15

2
1
2

| −51
2

−6 4 1 −18 | −34

 R4+ 1
2
R1

−−−−−→

12 −8 6 10 | 26
0 2 −1 −1 | 3
0 −11 15

2
1
2

| −51
2

0 0 4 −13 | −21

Now the numbers in the second column on the diagonal and below are {2,−11, 0}.

The largest in absolute value is −11, so interchange the second row with the third
row.

12 −8 6 10 | 26
0 −11 15

2
1
2

| −51
2

0 2 −1 −1 | 3
0 0 4 −13 | −21

 R3+ 11
2
R2

−−−−−→

12 −8 6 10 | 26
0 −11 15

2
1
2

| −51
2

0 0 4
11

−10
11

| −18
11

0 0 4 −13 | −21

The numbers in the third column on the diagonal and below are { 4

11
, 4}. The

largest one is 4, so swap the third and fourth rows.

12 −8 6 10 | 26
0 −11 15

2
1
2

| −51
2

0 0 4 −13 | −21
0 0 4

11
−10

11
| −18

11

 R4− 1
11

R3
−−−−−→

12 −8 6 10 | 26
0 −11 15

2
1
2

| −51
2

0 0 4 −13 | −21
0 0 0 3

11
| 3

11

Using backwards substitution,

3

11
x4 =

3

11
=⇒ x4 = 1

41

4x3 − 13 · 1 = −21 =⇒ 4x3 = −8 =⇒ x3 = −2

−11x2 +

(
15

2
· −2

)
+

1

2
· 1 = −51

2
=⇒ x2 = 1

12x1 − 8 · 1 + 6 · −2 + 10 · 1 = 26 =⇒ 12x1 = 36 =⇒ x1 = 3.

4 Iterative Methods for Solving Linear Systems

Gaussian elimination is an example of a so called direct method for the solution
of a linear system. In theory, direct methods give an exact solution of a non-
singular matrix system in a finite number of steps. In practice, due to round-
off errors, the result is only approximate. Direct methods are contrasted with
iterative methods which can be applied to solving a linear system of equations.
Like fixed-point iteration, an iterative method for solving linear systems begins
with an approximate guess which is refined at each iteration, converging to the
solution vector.

4.1 Jacobi Iteration

The Jacobi method is a form of fixed-point iteration for a system of equations. The
first step is to rewrite the equation to solve the ith equation for the ith unkown.
Then iterate starting with an initial guess.

Example 4.1: Apply four steps of the Jacobi iteration to approximate the
solution of the linear system

3x+ y − z = 4

2x+ 4y + z = 1

−x+ 2y + 5z = 1

Let’s start by solving the first equation for x, the second equation for y, and the
last equation for z.

42

x =
4 + z − y

3

y =
1− z − 2x

4

z =
1 + x− 2y

5

Let us use the initial guess x0 = (x0, y0, z0) = (0, 0, 0)x0

y0
z0

 =

0
0
0

x1

y1
z1

 =

 4+z0−y0
3

1−z0−2x0

4
1+x0−2y0

5

 =

 4+0−0
3

1−0−2·0
4

1+0−2·0
5

 =

4
3
1
4
1
5

 ≈

1.3333
0.2500
0.200

x2

y2
z2

 =

 4+z1−y1
3

1−z1−2x1

4
1+x1−2y1

5

 =

 4+1/5−1/4
3

1−1/5−2·4/3
4

1+4/3−2·1/4
5

 =

 79
60

− 7
15

11
30

 ≈

1.31667
−0.4667
0.3667

x3

y3
z3

 =

 4+z2−y2
3

1−z2−2x2

4
1+x2−2y2

5

 =

 4+11/30+7/15
3

1−11/30−2·79/60
4

1+79/60+2·7/15
5

 =

 29
18

−1
2

13
20

 ≈

 1.6111
−0.5000
0.6500

x4

y4
z4

 =

 4+z3−y3
3

1−z3−2x3

4
1+x3−2y3

5

 =

 4+13/20+1/2
3

1−13/20−2·29/18
4

1+29/18+2·1/2
5

 =

 103
60

−517
720
13
18

 ≈

 1.71667
−0.7180555
0.72222

The iteration converges to the vector

x
y
z

 =

 2
−1
1

 for large n.

MATLAB code for Jacobi Iteration

function [x,iter,err] = jacobi(A,b,tol,nmax)
% Jacobi iteration
% A is strictly diagonally dominant
n = size(A,1); % size of the matrix
D = diag(diag(A)); % matrix of diagonal
invD = diag(1./diag(A)); % inverse of diagonal matrix

43

Figure 9: Semilog plot of |xn+1−xn| vs number of iterations for the Jacobi iteration
for Example 4.1.

Q = A-D; % this is L+U
i = 1; % iteration count
res = 1; % residual
x_old = zeros(n,1);
err = zeros(nmax,1); % error vector
while (res>tol) && (i<nmax)

x = invD*(b-Q*x_old); % Jacobi iteration
res = norm(x-x_old); % residual
err(i)=res;
i = i+1;
x_old = x;

end
iter = i;
err = err(1:i);

Example 4.2: Apply the Jacobi iteration to approximate the solution of the
following system:

2x+ 4y + z = 1

3x+ y − z = 4

−x+ 2y + 5z = 1

Note that this is the same system as in the previous example with the first 2

44

equations swapped. Solving for x, y and z

x =
1− z − 4y

2
y = 4 + z − 3x

z =
1 + x− 2y

5

Applying the Jacobi iteration with initial vector (x0, y0, z0) = (0, 0, 0), we get the
first few iteratesx0

y0
z0

 =

0
0
0

 ,

x1

y1
z1

 =

0.5
4.0
0.2

 ,

x2

y2
z2

 =

−7.6
2.7
−1.3

 ,

x3

y3
z3

 =

−4.25
25.5
−2.4

show that the sequence diverges. What conditions should be satisfied for the Jacobi
iteration to work?

Definition: A matrix A = (aij) is said to be strictly diagonally dominant
if for each 1 ≤ i ≤ n, |aii| >

∑
j ̸=i |aij|. In other words, the magnitude of the

diagonal entry is larger than the sum of the magnitudes of all the other entry in
each row.

For example, the matrix A =

 3 1 −1
2 4 1
−1 2 5

 is strictly diagonally dominant

since
|3| > |1|+ | − 1|, |4| > |2|+ |1|, |5| > | − 1|+ |2|

while the matrix B =

 2 4 1
3 1 −1
−1 2 5

 is not strictly diagonally dominant since

|2| ≯ |4|+ |1|.

Theorem: If the n × n matrix A is strictly diagonally dominant, then A is
non-singular, and for every vector b and for every starting guess x0, the Jacobi
iteration applied to Ax = b converges to the unique solution.

Let us write the Jacobi method in matrix notation. Let D be the diagonal of A,
L the lower triangle (entries below the diagonal) of A, and U the upper triangle of
A (entries above the diagonal). The system of equations Ax = b can be written

45

in fixed-point form

Ax = b
(D + L+ U)x = b

Dx = b − (L+ U)x
x = D−1 (b − (L+ U)x)

Since D is diagonal, D−1 is the diagonal matrix of the reciprocals of the entries of
D. The Jacobi iteration is the fixed point iteration defined as follows:

x0 = initial vector
xn+1 = D−1 (b − (L+ U)xn) for n = 0, 1, 2, 3, . . .

Example: 3 1 −1
2 4 1
−1 2 5

u
v
w

 =

4
1
1

D =

3 0 0
0 4 0
0 0 5

, L =

 0 0 0
2 0 0
−1 2 0

, U =

0 1 −1
0 0 1
0 0 0

The Jacobi iteration with xn =

un

vn
wn

 is

un+1

vn+1

wn+1

 =

1/3 0 0
0 1/4 0
0 0 1/5

41
1

−

 0 1 −1
2 0 1
−1 2 0

un

vn
wn

 =

 (4− vn + wn)/3
(1− 2un − wn)/4
(1 + un − 2vn)/5

which agrees with the previous version.

4.2 Gauss-Seidel Iteration

The Gauss-Seidel method is closely related to the Jacobi method. The only differ-
ence between them is that in the Gauss-Seidel method, the most recently updated
values are used in the iteration.

Exercise: Use the Gauss-Seidel method to approximate the solution of the linear

46

system

2x+ 4y + z = 1

3x+ y − z = 4

−x+ 2y + 5z = 1

As shown previously, the matrix associated with the system above is not strictly
diagonally dominant. This can be fixed by swapping the first two equations, or
equivalently, swapping the first two rows of the resulting matrix. Then the matrix
system is: 3 1 −1

2 4 1
−1 2 5

x
y
z

 =

4
1
1

 .

The matrix is now strictly diagonally dominant. Let (x0, y0, z0) = (0, 0, 0) Thenx0

y0
z0

 =

0
0
0

x1

y1
z1

 =

 4+z0−y0
3

1−z0−2x1

4
1+x1−2y1

5

 =

 4/3
1−2·4/3

4
1+4/3+2·5/12

5

 =

 4/3
−5/12
19/30

 ≈

 1.3333
−0.41667
0.63333

x2

y2
z2

 =

 4+z1−y1
3

1−z1−2x2

4
1+x2−2y2

5

 =

 (4 + 19/30 + 5/12)/3
(1− 19/30− 101/30)/4
(1 + 101/60 + 3/2)/5

 =

 101/60
−3/4

251/300

 ≈

 1.68333
−0.7500
0.836667

x3

y3
z3

 =

 4+z2−y2
3

1−z2−2x3

4
1+x3−2y3

5

 =

 (4 + 251/300 + 3/4)/3
(1− 251/300− 838/225)/4
(1 + 1613/450 + 289/180)/5

 =

 419/225
−3197/3600
2783/3000

 ≈

 1.86222
−0.88056
0.927667

The Gauss-Seidel iteration converges to the vector

x
y
z

 =

 2
−1
1

Gauss-Seidel can be written in matrix form and identified as a fixed-point iteration.
Using similar notation to the Jacobi iteration,

Ax = (L+D + U)x = b

(L+D)x = −Ux + b

47

(L+D)xn+1 = −Uxn + b

The use of newly computed entries is accommodated by L.

Gauss-Seidel iteration:
x0 = initial vector
xn+1 = D−1 (b − Uxn − Lxn+1) for n = 0, 1, 2, 3, · · ·

Figure 10: Convergence of Jacobi and Gauss-Seidel iterations on Example 5.1.
Gauss-Seidel converges takes about 40 iterations to reach an error of 10−10. Jacobi
iteration takes 80 iterations to achieve the same accuracy.

MATLAB code for Gauss-Seidel

function [x,iter,err] = gauss_seidel(A,b,tol,nmax)
% Gauss-Seidel
% A must be strictly diagonally dominant
% nmax maximum number of iterations
% tol tolerance
i = 1; res = 1; n = size(A,1);
x_old = zeros(n,1); x = x_old;
invD = 1./diag(A);
err = zeros(nmax,1);
U = triu(A,1);
L = tril(A,-1);
while (res>tol)&&(i<nmax)

for j=1:n
x(j)= invD(j)*(b(j)-U(j,:)*x_old-L(j,1:j-1)*x(1:j-1));

48

end
res = norm(x-x_old); % residual error
x_old = x;
err(i) = res;
i = i+1; % increment count

end
iter = i;
err = err(1:i);

5 Polynomial Interpolation

This chapter introduces polynomial interpolation as a way to represent data.
Suppose data points (xi, yi) are taken from a function y = f(x), for example x may
represent the temperature and y the reaction rate. Polynomial interpolation aims
at finding a polynomial p(x) that approximates f on a suitable domain. The reason
why polynomials are used is that they are the most fundamental functions for
digital computers, and computers have fast methods for floating point addition and
multiplication, which are the only operations required in evaluating a polynomial.
For this reason, complicated functions (such as sin(x), cosh(x), exp(−x2)) can be
approximated by interpolating polynomials in order to make them computable.

Figure 11: The dashed curve is a polynomial of degree 4 that interpolates the solid
curve y = cos(x) on the interval [−π, π] at the points (−π,−1), (−π/2, 0), (0, 1),
(π/2, 0) and (π,−1).

49

A polynomial y = p(x) interpolates the data (x0, y0), · · · , (xn, yn) if yi = p(xi)
for each 0 ≤ i ≤ n.

We now introduce methods for determining the interpolating polynomial p(x)
given a set of data (x0, y0), · · · , (xn, yn).

5.1 Monomial Interpolation

Suppose that p(x) is a polynomial of degree less than or equal to n. Then the
standard way of writing p(x) is as follows

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n.

The set {1, x, x2, · · · , xn} of monomials forms a basis for the set of all polynomials
of degree not greater than n. Each polynomial of degree ≤ n is uniquely determined
by its set of n+1 coefficients {a0, a1, a2, · · · , an}. Thus, to find p(x), it is sufficient
to determine its coefficients.

Exercise 5.1: Find an interpolating polynomial of degree 2 that interpolates
the points (0, 1), (2, 2), (3, 4).

A polynomial of degree 2 is written as

p(x) = a0 + a1x+ a2x
2.

Since p(x) interpolates the data at the given points, we have

p(0) = 1, p(2) = 2, p(3) = 4.

After substitution at the x-values, the following system of equation is obtained.

a0 + a1 · 0 + a2 · 02 = 1

a0 + a1 · 2 + a2 · 22 = 2

a0 + a1 · 3 + a2 · 32 = 4

In matrix notation,1 0 0
1 2 22

1 3 32

a0
a1
a2

 =

1
2
4

 =⇒

1 0 0
1 2 4
1 3 9

a0
a1
a2

 =

1
2
4

By Gaussian elimination, the system above has solutions

a0 = 1, a1 = −1

2
, a2 =

1

2
.

50

Therefore, the interpolating polynomial is

p(x) = 1− 1

2
x+

1

2
x2

Check in MATLAB:

>> x = [0,2,3];
>> y = [1,2,4];
>> d = length(x)-1; % polynomial degree
>> p = polyfit(x,y,d); % find polynomial interpolant
>> format rat % output solution as fractions
>> p
p =

1/2 -1/2 1

The polynomial coefficients in MATLAB are arranged from the highest degree to
the lowest degree. In this case the polynomial is

p = 1/2*x.^2 - 1/2*x + 1.

In general, the determination of a polynomial p(x) = a0 + a1x + · · · + anx
n

interpolating the points (x0, y0), · · · , (xn, yn) leads to the solution of a linear system
of equations

1 x1 x2
1 x3

1 · · · xn
1

1 x2 x2
2 x3

2 · · · xn
2

...
...

...
... · · · ...

1 xn x2
n x3

n · · · xn
n

a0
a1
...
an

 =

y0
y1
· · ·
yn

The matrix in the system is known as the Vandermonde matrix. The de-

terminant of the Vandermonde matrix can be expressed as

det(V) =
∏

0≤i<j≤n

(xj − xi).

If the xi’s are distinct, all the factors in the determinant are nonzero. Hence
det(V) ̸= 0 so that V is invertible and hence the system can be solved. In general,
solving a system of equations is expensive when n is large. Hence monomial
interpolation is not used in general.

51

5.2 Lagrange Interpolation

Suppose we wish to interpolate the n+1 points (x0, y1), · · · , (xn, yn) by a polyno-
mial p(x) of degree less than or equal to n. To do this, we introduce a special class
of polynomials known as cardinal polynomials in interpolation theory denoted by
ℓ0, ℓ1, · · · , ℓn with the property that

ℓi(xj) = δij =

{
1, if i = j

0, if i ̸= j.

If these polynomials are determined, any continuous function f can be approxim-
ated in Lagrange form of the interpolating polynomial

pn(x) = ℓ0(x)f(x0) + ℓ1(x)f(x1) + · · ·+ ℓn(x)f(xn) =
n∑

i=0

ℓi(x)f(xi).

Let us evaluate pn(x) at xj

pn(xj) =
n∑

i=0

ℓi(xj)f(xi) =
n∑

i=0

δijf(xi) = f(xj)

since all terms ℓi(xj) are zero except for the term ℓj(xj) = 1. This shows that
pn(x) interpolates the function f at the points x0, · · · , xn. It remains to determine
a formula for the polynomials ℓj(x) j = 0, · · · , n.

ℓi(x) =
∏
j ̸=i
j=0

(
x− xj

xi − xj

)
, for all 0 ≤ i ≤ n.

The formula for ℓi(x) is a product of n linear factors. The denominators (xi−xj)
are just numbers, and the numerators (x−xj) are each linear polynomials so that
pn(x) is a polynomial of degree n.

Example 5.2: Find the Lagrange form of the interpolating polynomial for the
data The cardinal polynomials are

x 1 2 3 4
y 2 1 6 47

ℓ0(x) =

(
x− x1

x0 − x1

)(
x− x2

x0 − x2

)(
x− x3

x0 − x3

)
=

(
x− 2

1− 2

)(
x− 3

1− 3

)(
x− 4

1− 4

)
52

ℓ0(x) = −1

6
(x− 2)(x− 3)(x− 4)

ℓ1(x) =

(
x− x0

x1 − x0

)(
x− x2

x1 − x2

)(
x− x3

x1 − x3

)
=

(
x− 1

2− 1

)(
x− 3

2− 3

)(
x− 4

2− 4

)

ℓ1(x) =
1

2
(x− 1)(x− 3)(x− 4)

ℓ2(x) =

(
x− x0

x2 − x0

)(
x− x1

x2 − x1

)(
x− x3

x2 − x3

)
=

(
x− 1

3− 1

)(
x− 2

3− 2

)(
x− 4

3− 4

)

ℓ2(x) = −1

2
(x− 1)(x− 2)(x− 4)

ℓ3(x) =

(
x− x0

x3 − x0

)(
x− x1

x3 − x1

)(
x− x2

x3 − x2

)
=

(
x− 1

4− 1

)(
x− 2

4− 2

)(
x− 3

4− 3

)

ℓ3(x) =
1

6
(x− 1)(x− 2)(x− 3)

The interpolating polynomial

p3(x) = ℓ0(x)f(x0) + ℓ1(x)f(x1) + ℓ2(x)f(x2) + ℓ3(x)f(x3)

is then

p3(x) = −2

6
(x− 2)(x− 3)(x− 4) +

1

2
(x− 1)(x− 3)(x− 4)

−6

2
(x− 1)(x− 2)(x− 4) +

47

6
(x− 1)(x− 2)(x− 3)

In expanded form
p3(x) = 5x3 − 27x2 + 45x− 21

Check:
p(1) = 5 · 13 − 27 · 12 + 45 · 1− 21 = 2. ✓

p(2) = 5 · 23 − 27 · 22 + 45 · 2− 21 = 1. ✓

p(3) = 5 · 33 − 27 · 32 + 45 · 3− 21 = 6. ✓

53

p(4) = 5 · 43 − 27 · 42 + 45 · 4− 21 = 47. ✓

Let us check if this polynomial is the same as obtained using monomial inter-
polation. The Vandermonde system is

1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64

a0
a1
a2
a3

 =

2
1
6
47

Using Gaussian elimination, we get that

a0 = −21, a1 = 45, a2 = −27, a3 = 5.

The polynomial is
p(x) = 5x3 − 27x2 + 45x− 21

which is the same as that obtained by Lagrange interpolation. This example
supports the conclusion that the interpolating polynomial is unique.

Figure 12: The polynomial y = 5x3 − 27x2 +45x− 21 interpolates the data (1, 2),
(2, 1), (3, 6) and (4, 47).

Theorem: (Existence and Uniqueness of Polynomial Interpolation)

Let x0, x1, · · · , xn be distinct. Then for arbitrary values y0, y1, · · · , yn there exists
a unique polynomial p(x) of degree at most n such that p(xi) = yi for 0 ≤ i ≤ n.

54

5.3 Newton form of the Interpolating Polynomial

The Lagrange form of the interpolating polynomial is rarely used in practice be-
cause there are other more efficient ways of forming the interpolating polynomial.
Consider data obtained from evaluating a function y = f(x) at points x0, · · · , xn.
The Newton form of the interpolating polynomial is of the form

p(x) = a0+a1(x−x0)+a2(x−x0)(x−x1)+ · · ·+an(x−x0)(x−x1) · · · (x−xn−1).

The Newton’s form can be written in a nested form that is particularly efficient
for evaluation. For example, the Newton polynomial of degree 3

p(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + a3(x− x0)(x− x1)(x− x2)

can be evaluated in nested form as

p(x) = a0 + (x− x0) {a1 + (x− x1) [a2 + a3(x− x2)]}

requiring fewer arithmetic operations than a direct evaluation.

Example 5.3: Find the Newton form of the interpolating polynomial for the
data The Newton form of the polynomial is of the form

x 1 2 3 4
y 2 1 6 47

p(x) = a0 + a1(x− 1) + a2(x− 1)(x− 2) + a3(x− 1)(x− 2)(x− 3)

We need to determine the coefficients a0, · · · , a3. Note that

p(1) = a0 = 2

since all the other terms vanish at x = 1. Next, evaluating at x = 2 we get

p(2) = a0 + a1(2− 1) = 2 + a1(2− 1) = 2 + a1 = 1 =⇒ a1 = −1.

Evaluating the polynomial at x = 3, we get

p(3) = a0 + a1(3− 1) + a2(3− 1)(3− 2)

= 2 + (−1) · (3− 1) + a2(3− 1)(3− 2)

= 2a2

= 6

55

Hence a2 = 3 Finally, evaluating at x = 4,

p(4) = a0 + a1(4− 1) + a2(4− 1)(4− 2) + a3(4− 1)(4− 2)(4− 3)

= 2 + (−1) · 3 + 3 · 3 · 2 + a3 · 3 · 2 · 1
= 17 + 6a3

= 47.

So
6a3 = 30 =⇒ a3 = 5.

Hence

p(x) = 2− (x− 1) + 3(x− 1)(x− 2) + 5(x− 1)(x− 2)(x− 3).

In expanded form,
p(x) = 5x3 − 27x2 + 45x− 21 .

There is a particularly efficient way of computing the coefficients a0, · · · , a3
that uses the so-called divided difference table. For this, let us introduce some
notation. Assuming the data is obtained from sampling a function f(x), our goal is
to interpolate the points (x0, f(x0)), · · · , (xn, f(xn)). Listing the points in a table

x0 f(x0)
x1 f(x1)
...

...
xn f(xn)

We define the divided differences as follows

f [xk] = f(xk)

f [xk, xk+1] =
f [xk+1]− f [xk]

xk+1 − xk

f [xk, xk+1, xk+2] =
f [xk+1, xk+2]− f [xk, xk+1]

xk+2 − xk

f [xk, xk+1, xk+2, xk+3] =
f [xk+1, xk+2, xk+3]− f [xk, xk+1, xk+2]

xk+3 − xk

and so on. The Newton’s divided difference formula is then

p(x) = f [x0] + f [x0, x1](x− x0)

+f [x0, x1, x2](x− x0)(x− x1)

+f [x0, x1, x2, x3](x− x0)(x− x1)(x− x2)

+ · · ·
+f [x0, · · · , xn](x− x0) · · · (x− xn−1)

56

The divided differences can be arranged in a convenient table

x0 f [x0]
f [x0, x1]

x1 f [x1] f [x0, x1, x2]
f [x1, x2] f [x0, x1, x2, x3]

x2 f [x2] f [x1, x2, x3] f [x0, x1, x2, x3, x4]
f [x2, x3] f [x1, x2, x3, x4]

x3 f [x3] f [x2, x3, x4]
f [x3, x4]

x4 f [x4]

Table 9: Divided differences table with 5 data points.

Example 5.4: Use Newton’s divided differences table to find the interpolating
polynomial passing through the points (1, 2), (2, 1), (3, 6), (4, 47)

Applying the divided differences leads to the following table

1 2

−1

2 1 3

5 5
3 6 18

41
4 47

Table 10: Divided differences table for the data in Example 5.4

The interpolating polynomial is then

p(x) = 2− (x− 1) + 3(x− 1)(x− 2) + 5(x− 1)(x− 2)(x− 3)

or
p(x) = 5x3 − 27x2 + 45x− 21

MATLAB code for Newton’s Divided Differences

function c = newtondd(x,y)
% Newton divided differences
% computes coefficients of interpolating poly

57

% [x,y] data points
n = length(x);
v = zeros(n); % initialize table
c = zeros(n,1); % initialize output coeffs
for j=1:n

v(j,1)=y(j); % first column
end
for i=2:n % column i

for j=1:n+1-i % fill column top to bottom
v(j,i)=(v(j+1,i-1)-v(j,i-1))/(x(j+i-1)-x(j));

end
end
for i=1:n

c(i)=v(1,i);
end

5.4 Polynomial evaluation by nested multiplication

Suppose we want to evaluate the polynomial

p(x) = 3x4 + x3 − 4x2 + 2x− 1

at x = 1
2
. The direct way is as follows

p(1/2) = 3 · 1
2
· 1
2
· 1
2
· 1
2
+

1

2
· 1
2
· 1
2
− 4 · 1

2
· 1
2
+ 2 · 1

2
− 1.

There are 9 multiplications and 4 additions (or subtractions), that is 13 operations.
An efficient way to evaluate the polynomial is the so-called Horner’s scheme or
nested multiplication.

p(1/2) = −1 +
1

2

(
2 +

1

2

(
−4 +

1

2

(
1 +

1

2
(3)

)))
=

3

4

There are now only 4 multiplications and 4 additions, or 8 operations.

Exercise: Write the following polynomial in nested form

p(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + a3(x− x0)(x− x1)(x− x2)

In nested form, the Newton polynomial can be written as follows

p(x) = a0 + (x− x0) {a1 + (x− x1) [a2 + (x− x2)(a3)]}

MATLAB code for Horner’s nested polynomial evaluation

58

function y = nest(c,x,b)
% Horner’s scheme
% evaluate a polynomial using nested multiplication
% c : vector of coefficients in Newton form
% x : x values at which to evaluate
% b : base points
% output y: values of p(x)
n = length(b);
d = n-1; % degree of polynomial
y = c(n);
for i=d:-1:1

y = y.*(x-b(i))+c(i);
end

5.5 Errors in Polynomial Interpolation

In this section, we compute an error bound for polynomial interpolation.

Theorem: (Interpolation Error) Suppose x0, · · · , xn are distinct numbers in
[a, b] and f ∈ Cn+1[a, b]. Then for each x ∈ [a, b] there exists a number ξ ∈ (a, b)
with

f(x)− p(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0) · · · (x− xn)

where p(x) is the interpolating polynomial.

Example: Suppose f(x) = 1/x is approximated by a polynomial on [2, 4] using
the nodes x = 2, 2.75, and x = 4. Determine the error form for this polynomial,
and the maximum error when the polynomial is used to approximate f(x) for
x ∈ [2, 4].

Solution:

Let p(x) be the interpolating polynomial. Then p(x) is a polynomial of degree 2,
and the error form is

f(x)− p(x) =
f (3)(ξ)

3!
(x− 2)(x− 2.75)(x− 4)

where ξ ∈ (2, 4)

f(x) = x−1, f ′(x) = −x−2, f ′′(x) = 2x−3, f (3)(x) = −6x−4.

59

Therefore

f (3)(ξ)

3!
(x− 2)(x− 2.75)(x− 4) = − 1

ξ4
(x− 2)(x− 2.75)(x− 4).

The maximum of 1
ξ4

on [2, 4] is 1
24

= 1
16

. We now determine the maximum of

ϕ(x) = (x− 2)(x− 2.75)(x− 4)

on this interval. We first determine the critical points of ϕ(x).

ϕ(x) = (x− 2)(x− 2.75)(x− 4)

= (x− 2)(x− 11/4)(x− 4)

=
1

4
(x− 2)(4x− 11)(x− 4)

=
1

4
(4x2 − 19x+ 22)(x− 4)

=
1

4
(4x3 − 35x2 + 98x− 88)

Hence

ϕ′(x) =
1

4
(12x2 − 70x+ 98) = 3x2 − 35

2
x+

49

2
=

1

2
(3x− 7)(2x− 7).

The critical points occur at x = 7
3
≈ 2.333 and x = 7

2
= 3.5, both within the

interval [2, 4]. The values are ϕ(7/3) = 0.2315 and ϕ(7/2) = 0.5625. Therefore

max
x∈[2,4]

ϕ(x) = 0.5625

and so the maximum error is

f (3)(ξ)

3!
|(x− 2)(x− 2.75)(x− 4)| ≤ 1

16 · 6
· 0.5625 ≈ 0.0059.

>> xx = [2,2.75,4]; % interpolating nodes
>> yy = 1./xx; % y-values at interpolating nodes
>> c = newtondd(xx, yy); % Newton polynomial coefficients
>> x = linspace(1,5,500); % x-values for evaluation
>> y = nest(c, x, xx); % y-values by Horner’s scheme
>> plot(xx,yy,’ko’,x,y,’-.’,x,1./x,’b’,’Linewidth’,2)
>> grid on
>> grid minor

MATLAB code for generating Fig 13.

60

Figure 13: Interpolating polynomial (dashed curve) p(x) = 1
22
x2 − 35

88
x+ 49

44
of the

function f(x) = 1/x (solid curve) on the interval [2, 4] with nodes at x = 2, 2.75
and 4.

61

6 Numerical Differentiation

The main problem in computational calculus is how to compute the derivative or
integral of a function. There are two ways one can do this:

• Symbolic Computing: one can compute the derivative or integral of a
function in closed form using software such as Mathematica, Maple, Py-
thon (Sympy) and symbolic MATLAB (syms). It is quicker to compute the
5th derivative of the function f(x) = sin2

(
2xarctan(x) cosh(5x)

)
by symbolic

computing methods where the calculus rules are carried out by a computer.

• Numerical Computing: A function may be specified as a tabulated list
of numbers (x0, y0), · · · , (xn, yn) which may represent time/temperature or
height/weight measurements. The functional relationship between the vari-
ables is usually unknown, so that using the rules of calculus to determine the
derivative or integral is impossible. In this case, numerical differentiation
and integration are used.

6.1 Finite Difference Formulas

Recall the limit definition of the derivative of a function f at the point x:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

provided that the limit exists. This leads to a useful formula for approxim-
ating the derivative of a function at x. By Taylor’s formula:

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(ξ)

where ξ is a number between x and x+ h.

Two-point forward-difference formula

f ′(x) =
f(x+ h)− f(x)

h
− h

2
f ′′(ξ) .

When h is small,

f ′(x) ≈ f(x+ h)− f(x)

h

is a good approximation of the derivative. The term −h
2
f ′′(ξ) is the approx-

imation error that depends on a generally unknown ξ. Since the error is

62

proportional to h, the rate of convergence (without round-off error) is first-
order. The two-point forward-difference formula is a first-order method of
approximating f ′(x). In general if the error is proportional to hn, then the
method is nth order. We write O(hn) to denote an nth order method.

Exercise 6.1: Use the two-point forward difference formula to approximate
f ′(1) and find the approximation error, where f(x) = ln(x) for (a) h = 0.1,
(b) h = 0.01 (c) h = 0.001.

Solution: The two-point forward difference formula is

f ′(x) ≈ f(x+ h)− f(x)

h

(a)

f ′(1) ≈ ln(1.0 + 0.1)− ln(1.0)

0.1
= 0.953101798043249

(b)

f ′(1) ≈ ln(1.0 + 0.01)− ln(1.0)

0.01
= 0.995033085316809

(c)

f ′(1) ≈ ln(1.0 + 0.001)− ln(1.0)

0.001
= 0.999500333083423

Since f ′(x) = 1/x, then f ′(1) = 1. The approximation errors are easily
computed.

h approx. error
0.1 0.0468982019567507
0.01 0.00496691468319077
0.001 0.000499666916576769

Table 11: Convergence of the two-point forward difference formula on f(x) = ln(x)
for several values of h

Three-point centered difference formula

An O(h2) can be derived for f ′(x) by a more advanced strategy. Suppose f(x) is
three times continuously differentiable. Then

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f (3)(ξ1)

63

Figure 14: Loglog plot of the convergence of the two-point forward difference
for approximating the derivative of f(x) = ln(x) at x = 1 showing first-order
convergence.

and
f(x− h) = f(x)− hf ′(x) +

h2

2
f ′′(x)− h3

6
f (3)(ξ2)

where
x− h < ξ2 < x < ξ1 < x+ h.

Subtracting the two equations gives

f(x+ h)− f(x− h) = 2hf ′(x) +
h3

6

[
f (3)(ξ1) + f (3)(ξ2)

]
Solving for f ′(x) gives

f ′(x) =
f(x+ h)− f(x− h)

2h
− h2

12

[
f (3)(ξ1) + f (3)(ξ2)

]
By the Generalized Intermediate Value Theorem, there exists ξ such that x− h <
ξ < x+ h with,

f ′(x) =
f(x+ h)− f(x− h)

2h
− h2

6
f (3)(ξ)

Generalized Intermediate Value Thorem: Let f be a continuous function
on [a, b], ξ1, · · · , ξn ∈ [a, b] and c1, · · · , cn > 0 positive numbers. Then there exists

64

a number ξ ∈ (a, b) such that

f(ξ) =
c1f(ξ1) + · · ·+ cnf(ξn)

c1 + · · ·+ cn
.

In deriving the three-point centered difference formula, choose

c1 = c2 = 1

and a = x− h, b = x+ h in the Generalized Intermediate Value Theorem

Exercise 6.2: Use the three-point centered difference formula to approximate
the derivative of f(x) = ln(x) at x = 1 and find the approximation error. using
(a) h = 0.1, (b) h = 0.01 and (c) h = 0.001.

Solution: The two-point forward difference formula is

f ′(x) ≈ f(x+ h)− f(x− h)

2h

(a)

f ′(1) ≈ ln(1.0 + 0.1)− ln(1.0− 0.1)

0.2
= 1.00335347731076

(b)

f ′(1) ≈ ln(1.0 + 0.01)− ln(1.0− 0.01)

0.02
= 1.00003333533348

(c)

f ′(1) ≈ ln(1.0 + 0.001)− ln(1.0− 0.001)

0.002
= 1.00000033333348

h approx. error
0.1 0.00335347731075597
0.01 3.3335333477158e-05
0.001 3.33333478819142e-07

Table 12: Convergence of the three-point centered difference formula for f(x) =
ln(x) for several values of h

Three-point centered differences for second derivative

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
− h2

12
f (4)(ξ).

65

Figure 15: Loglog plot of the convergence of the three-point centered difference
for approximating the derivative of f(x) = ln(x) at x = 1 showing 2nd-order
convergence.

Proof: By Taylor’s series

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f (3)(x) +

h4

24
f (4)(ξ1)

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f (3)(x) +

h4

24
f (4)(ξ2).

So that

f(x+ h)− 2f(x) + f(x− h) = [f(x)− 2f(x) + f(x)] + f ′(x)[h− h]

+
h2

2
· 2f ′′(x) +

h3

6

[
f (3)(x)− f (3)(x)

]
+
h4

24

[
f (4)(ξ1) + f (4)(ξ2)

]
= h2f ′′(x) +

h4

24

[
f (4)(ξ1) + f (4)(ξ2)

]
Dividing by h2, and applying the Generalized Intermediate Value Theorem, we
obtain the three-point centered difference formula for the second derivative.

Exercise 6.3: Find the values of α, β, γ, δ, and p such that

f ′(x) ≈ αf(x− h) + βf(x) + γf(x+ 2h)

δh
+O(hp)

66

is the best possible approximation for f ′(x).

Solution:

By Taylor series

αf(x− h) = α

[
f(x)− hf ′(x) +

h2

2
f ′′(x)− h3

6
f (3)(ξ1)

]
βf(x) = βf(x)

γf(x+ 2h) = γ

[
f(x) + 2hf ′(x) +

(2h)2

2
f ′′(x) +

(2h)3

6
f (3)(ξ2)

]
for some ξ1 ∈ (x− h, x) and ξ2 ∈ (x, x+ 2h). We require that

α + β + γ = 0, 2γ − α = 1, 2γ +
α

2
= 0.

These are 3 equations in three unknowns α, β and γ.

From the second equation α = 2γ − 1. By the third equation

2γ + (2γ − 1)/2 = 0.

Multiplying by 2,
4γ + 2γ − 1 = 0

or
γ =

1

6
.

So
α =

2

6
− 1 = −4

6

and
β = −α− γ =

4

6
− 1

6
=

3

6
.

Hence δ = 6 and

f ′(x) =
−4f(x− h) + 3f(x) + f(x+ 2h)

6h
− h2

6

[
4

6
f (3)(ξ1) +

8

6
f (3)(ξ2)

]

f ′(x) =
−4f(x− h) + 3f(x) + f(x+ 2h)

6h
− h2

3
f (3)(ξ)

where ξ ∈ (x − h, x + 2h) and we have used the Generalized Intermediate Value
Theorem f(ξ) = (w1f(ξ1) + w2f(ξ2))/(w1 + w2) with w1 =

4
6

and w2 =
8
6
.

67

7 Numerical Integration

This section is concerned with the approximation of definite integrals. We will
discuss methods for numerical integration, or quadrature based on interpola-
tion.

7.1 Trapezoidal rule

Suppose that f(x) is a function with continuous second derivative defined on an
interval [x0, x1]. Consider the degree 1 polynomial interpolating f at (x0, f(x0))
and (x1, f(x1)). Using the Lagrange formulation, we find that

f(x) = f(x0)
x− x1

x0 − x1

+ f(x1)
x− x0

x1 − x0

+
(x− x0)(x− x1)

2!
f ′′(ξ) = p(x) + E(x)

where E(x) is the error term and p(x) is the linear interpolant. Integrating both
sides on [x0, x1], we get∫ x1

x0

f(x) dx =

∫ x1

x0

p(x) dx+

∫ x1

x0

E(x) dx.

Computing the first integral gives,∫ x1

x0

p(x) dx = f(x0)

∫ x1

x0

x− x1

x0 − x1

dx+ f(x1)

∫ x1

x0

x− x0

x1 − x0

dx.

Setting h = x1 − x0, and making a substitution u = x1 − x, we get du = −dx and∫ x1

x0

x− x1

x0 − x1

dx =

∫ 0

h

−u

−h
(−du) =

1

h

∫ h

0

u du =
h

2
.

Using x− x0 = (x1 − x0)− u = h− u∫ x1

x0

x− x0

x1 − x0

dx =
1

h

∫ h

0

(u− h) du =
h

2

Hence, ∫ x1

x0

p(x) dx =
h

2
[f(x0) + f(x1)]

68

calculates the area of the trapezoid between x0 and x1. Let us compute the integral
of the error term∫ x1

x0

E(x) dx =
1

2!

∫ x1

x0

(x− x0)(x− x1)f
′′(ξ) dx

=
f ′′(ξ)

2

∫ x1

x0

(x− x0)(x− x1) dx

=
f ′′(ξ)

2

∫ h

0

u(u− h) du

=
f ′′(ξ)

2

[
h3

3
− h3

2

]
= −h3

12
f ′′(ξ).

Trapezoidal rule:

∫ x1

x0

f(x) dx =
h

2
[f(x0) + f(x1)]−

h3

12
f ′′(ξ)

where h = x1 − x0 and ξ ∈ (x0, x1).

Composite Trapezoidal Rule:

The trapezoidal rule above is for one interval [x0, x1]. Let us extend this formula
for multiple intervals defined on the nodes a = x0 < x1 < x2 < · · · < xn = b. We
are going to assume, further, that the width of interval k, hk+1 := xk+1 − xk = h
for every k = 0, 1, · · · , n, so that the sub-division is uniform.

∫ b

a

f(x) dx =
n∑

k=1

∫ xk+1

xk

f(x) dx

=
h

2
[f(x0) + f(x1) + f(x1) + f(x2) + · · ·+ f(xn)]−

h3

12

n∑
k=1

f ′′(ξk)

=
h

2

[
f(x0) + 2

n−1∑
k=1

f(xk) + f(xn)

]
− h3

12

f ′′(ξ)

n

Since the sub-division is uniform, then h = b−a
n

, and using a = x0, b = xn and
xk = a+ kh, it follows that∫ b

a

f(x) dx =
h

2

[
f(a) + 2

n−1∑
k=1

f(a+ kh) + f(b)

]
− (b− a)h2

12
f ′′(ξ)

69

Exercise 7.1: Use the trapezoidal rule with n = 4 sub-intervals to approximate
the definite integral ∫ 2

1

ln(x) dx.

Solution: h = (b − a)/n = (2 − 1)/4 = 1
4
. The nodes are a = x0 = 1, x1 =

1.25, x2 = 1.5, x3 = 1.75, b = x4 = 2.∫ 2

1

ln(x) dx ≈ 0.25

2
[ln(1) + 2 ln(1.25) + 2 ln(1.5) + 2 ln(1.75) + ln(2)]

= 0.383699509

To check the accuracy, let us compute the exact solution∫ 2

1

ln(x) dx = [x ln(x)− x]21 = (2 ln(2)−2)−(ln(1)−1) = 2 ln(2)−1 = 0.386294361

MATLAB code for the Trapezoidal Rule

function q = trapezoid(f,a,b,n)
% trapezoidal rule
% f is the function to be integrated
% n number of sub-divisions
% a - left end-point
% b - right end-point
h = (b-a)/n;
q = 0.5*h*(f(a)+f(b)); % end-points
for k=1:n-1 % middle-points

xk = a+k*h;
q = q + h*f(xk);

end

Degree of precision: The degree of precision of a numerical integration rule
is the maximum possible degree of a polynomial such that the rule applied to the
polynomial is exact, that is, incurs no discretization errors.

Exercise 7.2: Find the degree of precision of the trapezoidal rule.

Solution: We test the trapezoidal rule on the monomials {1, x, x2, x3, · · · } until
the rule no longer applies. Consider

∫ 1

0
f(x) dx, and set h = 1 − 0 = 1, f(x) =

1, x, x2, x3, · · · ∫ 1

0

1 dx = 1,
1

2
[1 + 1] = 1✓

70

∫ 1

0

x dx =
1

2
,

1

2
[0 + 1] =

1

2
✓∫ 1

0

x2 dx =
1

3
,

1

2
[0 + 1] =

1

2
,X

The degree of precision of the trapezoidal rule is 1.

7.2 Simpson’s rule

Let us approximate the function f(x) by a quadratic function. For this, we need
at least 3 points. Suppose x0, x1 and x2 are given. The Lagrange interpolant of
f(x) at the points (x0, f(x0)), (x1, f(x1)) and (x2, f(x2)) is

p(x) = f(x0)
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+f(x1)

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
+f(x2)

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
.

If f is three-times continuously differentiable, then

f(x) = p(x) +
f (3)(ξ)

3!
(x− x0)(x− x1)(x− x2).

Then ∫ x2

x0

f(x) dx =

∫ x2

x0

p(x) dx+

∫ x2

x0

E(x) dx

where

E(x) =
f (3)(ξ)

3!
(x− x0)(x− x1)(x− x2)

is the error term.

Let us assume that h = x1 − x0 = x2 − x1, u = x2 − x. Then du = −dx and
x = x2 − u, x− x1 = h− u, x− x0 = 2h− u, x− x2 = −u.

∫ x2

x0

p(x) dx =
f(x0)

2h2

∫ x2

x0

(x− x1)(x− x2) dx− f(x1)

h2

∫ x2

x0

(x− x0)(x− x2) dx

+
f(x2)

2h2

∫ x2

x0

(x− x0)(x− x1) dx

=
f(x0)

2h2

∫ 2h

0

u(u− h) du+
f(x1)

h2

∫ 2h

0

u(2h− u) dx+

+
f(x2)

h2

∫ 2h

0

(2h− u)(h− u) du

=
h

3
[f(x0) + 4f(x1) + f(x2)]

71

The error term can be computed as∫ x2

x0

E(x) dx = −h5

90
f (4)(ξ)

where h = x2 − x1 = x1 − x0 and ξ ∈ (x0, x2).

Simpson’s Rule

∫ x2

x0

f(x) dx =
h

3
[f(x0) + 4f(x1) + f(x2)]−

h5

90
f (4)(ξ)

Composite Simpson’s Rule

The simple Simpson’s rule requires two sub-intervals, so that composite Simpson’s
rule requires an even number of sub-divisions. Let n = 2m, where m is an integer
greater than or equal to one. Let h = (b − a)/n, and xk = a + kh for k =
0, 1, 2, · · · , n, a = x0 and b = xn. Then,∫ b

a

f(x) dx =
h

3

[
f(a) + f(b) + 4

m∑
ℓ=1

f(x2ℓ−1) + 2
m−1∑
ℓ=1

f(x2ℓ)

]
−

m−1∑
ℓ=1

h5

90
f (4)(ξℓ)

The error term can be expressed as, by the Generalized Intermediate Value The-
orem,

h5

90

m−1∑
ℓ=1

f (4)(ξℓ) =
h5

90
mf (4)(ξ)

Since h = (b − a)/n and n = 2m, then h · m = (b − a)/2. The error term is
−(b− a)h4f (4)(ξ)/180 assuming that the fourth derivative is continuous, and that
x0 < ξ < x2

∫ b

a

f(x) dx =
h

3

[
f(a) + f(b) + 4

m∑
ℓ=1

f(x2ℓ−1) + 2
m−1∑
ℓ=1

f(x2ℓ)

]
− (b− a)h4

180
f (4)(ξ)

Exercise 7.3: Use Simpson’s rule with n = 4 sub-intervals to approximate the
value of ∫ 2

1

ln(x) dx.

Use the error formula to approximate the maximum possible error.

72

Solution: The width of each sub-interval is h = (b− a)/n = (2− 1)/4 = 0.25.∫ 2

1

ln(x) dx ≈ 0.25

3
[ln(1) + ln(2) + 4(ln(1.25) + ln(1.75)) + 2 ln(1.5)]

= 0.386259562814567

The exact value is
∫ 2

1
ln(x) dx = 2 ln(2) − 1 ≈ 0.386294361119891 and the exact

error is 0.0000347983. The maximum error is

(b− a)h4|f (4)(ξ)|/180

for some 1 ≤ ξ ≤ 2.

f ′(x) = 1/x, f ′′(x) = −x−2, f (3)(x) = 2x−3, f (4)(x) = −6x−4

The maximum value of |f (4)(x)| on the interval [1, 2] is 6
14

= 6. Hence the maximum
error is

(2− 1) · (0.25)4

180
· 6 =

(0.25)4

30
= 0.00013021

Exercise 7.4: Determine the minimum number of sub-divisions (and hence
the width h of each sub-interval) so that the maximum error in using Simpson’s
method to approximate ∫ π

0

sin(x) dx

is less that 10−6.

Solution: We require

(b− a)h4|f (4)(ξ)|/180 < 10−6

where f(x) = sin(x). Since f (4)(x) = sin(x), it follows that |f (4)(ξ)| ≤ 1 for any ξ.
Hence,

πh4/180 < 10−6

or
h <

(
180 · 10−6/π

)1/4
= 0.087

The number of sub-divisions n is then n = (b − a)/h = π/0.087 = 36.1. Since n
must be an even integer, we choose n = 38 sub-divisions.

In practice, the value of n is an over-estimate since n = 34 is sufficient to bring
the error to less than 10−6. The value computed from the error formula is a good
ball-park figure.

MATLAB code for Simpson’s Rule

73

function q = simpson(f,a,b,n)
assert(mod(n,2)==0,’n must be even!’)
% throw error if n is odd
h = (b-a)/n;
hs = h/3;
q = hs*(f(a)+f(b)); % first and last values
for k = 1:n-1

if mod(k,2)==1 % odd indices
q = q + 4*hs*f(a+k*h);

else
q = q + 2*hs*f(a+k*h); % even indices

end
end

Exercise 7.5: Show that the degree of precision of Simpson’s rule is n = 3.

7.3 Gaussian quadrature

The degree of precision of a quadrature method is the highest degree of a polyno-
mial that can be calculated by the quadrature method without error. For example,
the degree of precision of the Trapezoidal rule is n = 1, and the degree of precision
of Simpson’s rule is n = 3. In general, if a quadrature rule is developed from a
degree n interpolatory polynomial using evenly spaced points, then the degree of
precision is n if the polynomial degree is odd, and n+ 1 if the polynomial degree
is even. More accurate methods (Newton-Cotes methods) can be developed using
polynomials of higher degree n = 3, 4, · · · and evenly spaced points. The number
of function evlauations for Newton-Cotes methods is n + 1, e.g. n = 2 function
evaluations for the trapezoidal rule and n = 3 for Simpson’s rule.

Are there methods that can achieve a higher degree of precision with fewer function
evaluations than Newton-Cotes methods? It turns out that this is true, if the nodes
are chosen unevenly. Gaussian quadrature turns out to have degree of precision
2n+ 1 using only n+ 1 function evaluations.

Gaussian Quadrature:∫ 1

−1

f(x) dx ≈ w1f(x1) + · · ·wnf(xn)

where the wi are the weights and xi are the nodes. The weights and nodes for
Gaussian quadrature are tabulated below for n = 2, 3 and 4.

74

n nodes xi weights wi

2 −
√
1/3 1√
1/3 1

3 −
√
3/5 5/9

0 8/9√
3/5 5/9

4 −
√

15+2
√
30

35
90−5

√
30

180

−
√

15−2
√
30

35
90+5

√
30

180√
15−2

√
30

35
90+5

√
30

180√
15+2

√
30

35
90−5

√
30

180

Table 13: Gaussian quadrature nodes and weights

Exercise 7.6: Approximate the integral∫ 1

−1

e−
x2

2 dx

using Gaussian quadrature.

Solution: The correct answer to 14 digits is 1.7112487837843. Let f(x) = e−x2/2

be the integrand

n = 2 :

∫ 1

−1

f(x) dx ≈ w1f(x1) + w2f(x2)

= 1 · f(−
√

1/3) + 1 · f(
√

1/3)

≈ 1.69296344978123

n = 3 :

∫ 1

−1

f(x) dx ≈ w1f(x1) + w2f(x2) + w3f(x3)

=
5

9
f(−

√
3/5) +

8

9
f(0) +

5

9
f(
√
3/5)

≈ 1.71202024520191

75

n = 4 :

∫ 1

−1

f(x) dx ≈ w1f(x1) + w2f(x2) + w3f(x3) + w4f(x4)

≈ 1.71122450459949

Gaussian Quadrature on [a, b]

To approximate an integral on [a, b] the problem needs to be translated to
[−1, 1] using the substitution

t =
2x− a− b

b− a
.

Then
x =

(b− a)t+ a+ b

2
and

dx =
b− a

2
dt.

t = −1 =⇒ x = a, t = 1 =⇒ x = b.

Hence ∫ b

a

f(x) dx =

∫ 1

−1

f

(
(b− a)t+ a+ b

2

)
b− a

2
dt

Exercise 7.7: Use Gaussian quadrature with n = 3 to approximate∫ 2

1

ln(x) dx.

∫ 2

1

ln(x) dx =

∫ 1

−1

ln

(
t+ 3

2

)
1

2
dt

Using f(t) = 1
2
ln((t + 3)/2), we get 0.386300421584011. The exact solution is

2 ln(2)− 1 ≈ 0.386294361119891

Exercise 7.8: Use Gaussian quadrature with n = 2, 3 and 4 to compute∫ 1

0

sin(x)

x
dx.

Solution: Note that the function f(x) = sin(x)/x has a removable singularity
at x = 0, and can be made into a continuous function by defining f(0) = 1. The
solution to 14 digits is 0.9460830703671831.

76

By symmetry, ∫ 1

0

sin(x)

x
dx =

1

2

∫ 1

−1

sin(x)

x
dx.

Set
f(x) =

sin(x)

2x
.

(i) n = 2 :∫ 1

−1

f(x) dx ≈ 1 ·
sin(−

√
1/3)

−2
√

1/3
+ 1 ·

sin(
√

1/3)

2
√

1/3
= 0.9453630556704172

(ii) n = 3 :∫ 1

−1

f(x) dx ≈ 5

9
·
sin(−

√
3/5)

−2
√
3/5

+
8

9
· 1
2
+
5

9
·
sin(

√
3/5)

2
√

3/5
= 0.9460874989218995

(iii) n = 4 :∫ 1

−1

f(x) = w1f(x1) + w2f(x2) + w3f(x3) + w4f(x4) = 0.9460830546901068

MATLAB codes for Gaussian Quadrature

function q = gaussquad(f,a,b,n,m)
% Gaussian quadrature with m nodes per sub-interval
% n: number of subintervals
h = (b-a)/n;
[x,w]=gauleg(m); % nodes and weights
k = 0:n;
nds = a+k*h; % nodes
q = 0;
for j=1:n

aj = nds(j);
bj = nds(j+1);
xj = 0.5*(bj-aj)*x+0.5*(bj+aj);
wj = 0.5*(bj-aj)*w;
q = q + wj’*f(xj);

end

77

function [x,w]=gauleg(n)
% input n: order of the Gaussian quadrature
% outputs: x nodes, w weights
% defined on [-1,1]
x=zeros(n,1);
w=zeros(n,1);

m=(n+1)/2;
xm=0.0;
xl=1.0;
for i=1:m

z=cos(pi*(i-0.25)/(n+0.5));
while 1

p1=1.0;
p2=0.0;
for j=1:n

p3=p2;
p2=p1;
p1=((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j;

end
pp=n*(z*p1-p2)/(z*z-1.0);
z1=z;
z=z1-p1/pp;
if (abs(z-z1)<eps), break, end

end
x(i)=xm-xl*z;
x(n+1-i)=xm+xl*z;
w(i)=2.0*xl/((1.0-z*z)*pp*pp);
w(n+1-i)=w(i);

end

78

8 Ordinary Differential Equations

The solution of ordinary and partial differential equations occupies a major part of
activities within scientific computing. This is because many processes in science,
engineering, and finance are modeled by differential equations, and except for a
small number of simple cases, cannot be solved by analytic methods. Numerical
algorithms for differential equations have thus become an integral part of scientific
problem solving.

In this section, we will learn how to solve ordinary differential equations of the
form

y′(t) = f(t, y(t)).

These are first-order differential equations, where the rate of change of a quantity
y depends on the value of the quantity and time.

8.1 Initial Value Problems

Let us begin our study of ordinary differential equations with an illustration. Con-
sider the logistic equation modeling the rate of change of a population

y′ = cy(1− y)

where y′ is the rate of change of the population with respect to time, c the growth
rate. The rate of change y′ is proportional to the product of the current population
and the remaining capacity 1−y. The growth rate of the population is small both
when the population y is small and when the population is near capacity y close
to 1.

The IVP has infinitely many solutions. By specifying an initial value, we can
restrict the solutions to a single solution. An initial value problem (IVP) of a
first order differential equation is the equation together with an initial condition
on a specified interval a ≤ t ≤ b:

y′ = f(t, y)
y(a) = ya
t in [a, b]

The logistic differential equation has a solution that can be written in terms of
elementary functions.

y(t) = 1− 1

1 + y0
1−y0

ect
.

79

Figure 16: The slope field of the logistic equation with two particular solutions
emanating from the initial conditions y(0) = 1.5 and y(0) = 0.2. Both solutions
converge towards y(t) = 1 for large t

Using an arrow to plot the slope at each point, we get the direction field
or slope field of the differential equation. If an initial value is specified, the
solution of the differential equation can be obtained by following the slope fields;
the solution is tangent to the slope field emanating from the initial value.

8.2 Euler’s method

The logistic equation has a fairly simple solution. Most differential equations
arising in applications do not have an explicit solution formula. The slope field
in Figure 16 suggests a computational way of solving differential equations: begin
at (t0, y0) and follow the slope field. After a small amount of time, re-evaluate
the slope and follow the slope-field there and follow the new direction to a point
(t1, y1). Repeat the process.

80

Euler’s method for solving the initial value problem y′(t) = f(t, y) is derived
using the forward difference approximation of the first derivative at (tn, yn). Sup-
pose we want to solve the IVP in an interval [0, b]. We first discretize the interval
0 = t0 < t1 < · · · < tN = b. Let us suppose further that the points are uniform,
i.e. hn := tn+1 − tn = h for every n = 1, 2, 3, · · · . Recall that

y(tn+1)− y(tn)

h
= y′(tn)−

h

2
f ′′(c)

for some c ∈ (tn, tn+1). Since y′(t) = f(t, y), and using the approximation y(tn) ≈
yn we get Euler’s method.

yn+1 = yn + hf(tn, yn) = yn + hfn ,

where fn = f(tn, yn). Starting with y0, we use the above iteration to generate yn,
n = 1, 2, 3, · · ·

Example 8.1: Use Euler’s method to approximate the solution of the IVP

y′ = −2t− y, y(0) = 1

on the interval t ∈ [0, 0.3] using a step size of h = 0.1.

Solution: We need to compute y1, y2 and y3.

y1 = y0 + hf(t0, y0)

y0 = 1, h = 0.1, f(t0, y0) = −2t0 − y0 = −2(0)− 1 = −1.

y1 = 1 + 0.1(−1) = 1− 0.1 = 0.9

The calculation of y2 and y3 is similar.

y2 = y1 + hf(t1, y1) = 0.790

y3 = y2 + hf(t2, y2) = 0.671

The exact solution is y(t) = 2−2t−e−t, and the correct value is y(0.3) = 0.659182.
The absolute error at y(0.3) is:

|y(0.3)− y3| = 0.011818.

81

8.3 Implicit Euler’s Method

Euler’s method above is an explicit method because the solution at the next time
step depends on the solution at the previous time step. The stability of Euler’s
method can be improved by considering an implicit modification. Implicit means
that the solution at the current time step depends on both the past and the current
time.

In order to derive the implicit Euler’s method, we approximate y′ by a back-
wards difference formula.

yn+1 − yn
h

≈ y′(tn+1) = f(tn+1, yn+1).

The implicit Euler’s method is then

yn+1 = yn + hfn+1

Exercise 8.2:

Find an approximation of y(0.03) of the IVP

y′ = −2t− y, y(0) = 1.0

using the Implicit Euler’s method.

Solution:

yn+1 = yn + hfn+1 = yn + h[−2tn+1 − yn+1]

yn+1(1 + h) = yn − 2htn+1

yn+1 =
yn − 2htn+1

1 + h

y1 =
y0 − 2ht1
1 + h

=
1− 2 · 0.12

1 + 0.1
= 0.890909

y2 = 0.773554

y3 = 0.648685

The correct value is y(0.3) = 0.659182 and the absolute error is |y(0.3) − y3| =
0.010497.

82

8.4 Modified Euler’s method

This is also known as Heun’s method or Improved Euler, or Euler-Cauchy’s method.
Essentially the function f is overaged over the two endpoints:

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, ỹn+1)]

where ỹn+1 is then approximated by Euler’s method yn+1 = yn + hf(tn, yn) so the
modified Euler’s method takes the form

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn + hf(tn, yn)]

Example 8.3: Find an approximation to y(0.3) for the IVP

y′ = −2t− y, y(0) = 1.0

using the modified Euler’s method and step size h = 0.1.

Solution:

y1 = y0 +
h

2
[f(t0, y0) + f(t1, y0 + hf(t0, y0)]

f(t0, y0) = −2t0 − y0 = −1

f(t1, y0 + hf(t0, y0)) = −2t1 − (y0 + hf(t0, y0)) = −2 · 0.1− (1− 0.1 · 1) = −1.1

y1 = 1 +
0.1

2
(−1− 1.1) = 0.895000

y2 = 0.780975

y3 = 0.658782

The exact value is y(0.3) = 0.659182. The absolute error is then |y(0.3) − y3| =
0.000399.

Trapezoidal method (Crank-Nicholson)

Consider the first order IVP

y′(t) = f(t, y), y(0) = y0,

on the time interval [tn, tn+1]. Integrating both sides of the differential equation
on the interval [tn, tn+h] and applying the Fundamental Theorem of Calculus, we

83

obtain ∫ tn+1

tn

y′(s) ds =

∫ tn+1

tn

f(s, y(s)) ds

The left hand side evaluates to y(tn+1)− y(tn). The integral on the right hand is
approximated using the Trapezoidal rule∫ tn+1

tn

f(s, y(s)) ds =
h

2
[f(tn, yn) + f(tn+1, yn+1)]−

h3

12
f (2)(cn)

for some cn ∈ (tn, tn+1). Dropping the higher-order error term we get the Trapezoidal
(Crank-Nicholson) scheme

yn+1 = yn +
h

2
[f(tn, yn) + f(tn+1, yn+1)]

Exercise 8.4: Find an approximation to y(0.3) for the IVP

y′ = −2t− y, y(0) = 1

using the Trapezoidal method with step size h = 0.1

Solution:

yn+1 = yn +
h

2
[fn + fn+1]

= yn +
h

2
[−2tn − yn − 2tn+1 − yn+1]

yn+1(1 + h/2) = yn(1− h/2)− h(tn + tn+1)

yn+1 =
yn(1− h/2)− h(tn + tn+1)

1 + h/2
y1 = 0.895238

y2 = 0.781406

y3 = 0.659367

The exact solution is y(0.3) = 0.659182. The absolute error is y(0.3) − y3| =
0.000224.

84

8.5 Runge Kutta methods

These are some of the most commonly used methods for approximating solutions
of differential equations. There are several levels of Runge-Kutta methods with
the convergence rates increasing with each level.

RK-1:

yn+1 = yn + hf(tn, yn)

Notice that RK-1 is the (forward) Euler’s method.

RK-2:

Define
k1 = f(tn, yn)

k2 = f(tn + h, yn + hk1).

Then the RK-2 method is defined by the iteration

yn+1 = yn +
h

2
[k1 + k2] .

RK-2 is the modified Euler’s method.

RK-3:

Define k1, k2 and k3 as:

k1 = f(tn, yn)

k2 = f

(
tn +

h

2
, yn +

h

2
k1

)
k3 = f(tn + h, yn + 2hk1 − hk2)

.

The RK-3 method is then defined as

yn+1 = yn +
h

6
[k1 + 4k2 + k3]

85

RK-4:

Define k1, k2, k3 and k4 as follows:

k1 = f(tn, yn)

k2 = f(tn +
h

2
, yn +

h

2
k1)

k3 = f(tn +
h

2
, yn +

h

2
k2)

k4 = f(tn + h, yn + hk3)

yn+1 = yn +
h

6
[k1 + 2k2 + 2k3 + k4]

Exercise 8.5:

Find an approximation to y(0.03) for the IVP

y′(t) = −2t− y, y(0) = 1

using RK-4 using a step size of h = 0.1. Compute the absolute errors.

Solution:

RK-4:

k1 = f(t0, y0) = −2t0 − y0 = −2(0)− 1 = −1

k2 = f(t0+
h

2
, y0+

h

2
k1) = −2(t0+h/2)−(y0+

h

2
k1) = −2·0.1

2
−
(
1 +

0.1

2
(−1)

)
= −1.05

k3 = f(t0+
h

2
, y0+

h

2
k2) = −2(t0+h/2)−(y0+

h

2
k2) = −2·0.1

2
−
(
1 +

0.1

2
(−1.05)

)
= −1.0475

k4 = f(t0 + h, y0 + hk3) = −2(0.1)− (1 + 0.1(−1.0475)) = −1.09525

y1 = 1 +
0.1

6
[−1 + 2(−1.05) + 2(−1.0475) + (−1.09525)] = 0.8951625

y2 = 0.781269098594

y3 = 0.6591851577999

The exact solution at t = 0.3 is y(0.3) = 0.659181779318. The absolute error is
|y(0.3)− y3| = 0.000000201319 = 2.01319× 10−7.

86

	Introduction
	Loss of significance

	Roots of nonlinear equations
	Bisection Method
	Convergence of bisection

	Fixed-Point Iteration
	Fixed-Point Theorem

	Newton's Method
	Convergence of Newton's Method

	Secant Method

	Solution of Linear Systems
	Gaussian Elimination
	LU Factorization
	LU factorization and solution of linear systems
	Gaussian Elimination with Partial Pivoting

	Iterative Methods for Solving Linear Systems
	Jacobi Iteration
	Gauss-Seidel Iteration

	Polynomial Interpolation
	Monomial Interpolation
	Lagrange Interpolation
	Newton form of the Interpolating Polynomial
	Polynomial evaluation by nested multiplication
	Errors in Polynomial Interpolation

	Numerical Differentiation
	Finite Difference Formulas

	Numerical Integration
	Trapezoidal rule
	Simpson's rule
	Gaussian quadrature

	Ordinary Differential Equations
	Initial Value Problems
	Euler's method
	Implicit Euler's Method
	Modified Euler's method
	Runge Kutta methods

