- 
                                Compute the Fourier Transform of the function
                                $$f(x)=\begin{cases} 1, & \text{if } |x|\leq 1\\ 0, & \text{if } |x| > 1. \end{cases} $$
                                 
- 
                                Use the method of Fourier Transforms to solve the heat equation below, leaving your solution without the imaginary unit \(i\).
                                \[ \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2},\,\,\,-\infty
                                    < x < \infty,\,\,t> 0\] \[ u(x,0) = f(x) = \begin{cases}1, & \text{if } |x|\leq 1\\ 0, & \text{if } |x| > 1. \end{cases}\] 
- 
                                Compute the Fourier sine and cosine transforms of the functions below.
                                
                                    - 
                                        \[f(x) = e^{-ax},\,\,\,a > 0\]
                                    
- 
                                        \[ f(x) = \begin{cases}1, & \text{if } |x|\leq 1\\ 0, & \text{if } |x| > 1. \end{cases}\]
                                    
 
- 
                                    Use a Fourier sine transform to solve the heat equation
                                    \[ \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2},\,\,\,0
                                        < x < \infty,\,\,t> 0\] \[ u(x,0) = f(x) = e^{-x},\] \[u(0,t)=0. \]