-
Compute the Fourier Transform of the function
$$f(x)=\begin{cases} 1, & \text{if } |x|\leq 1\\ 0, & \text{if } |x| > 1. \end{cases} $$
-
Use the method of Fourier Transforms to solve the heat equation below, leaving your solution without the imaginary unit \(i\).
\[ \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2},\,\,\,-\infty
< x < \infty,\,\,t> 0\]
\[ u(x,0) = f(x) = \begin{cases}1, & \text{if } |x|\leq 1\\ 0, & \text{if } |x| > 1. \end{cases}\]
-
Compute the Fourier sine and cosine transforms of the functions below.
-
\[f(x) = e^{-ax},\,\,\,a > 0\]
-
\[ f(x) = \begin{cases}1, & \text{if } |x|\leq 1\\ 0, & \text{if } |x| > 1. \end{cases}\]
-
Use a Fourier sine transform to solve the heat equation
\[ \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2},\,\,\,0
< x < \infty,\,\,t> 0\]
\[ u(x,0) = f(x) = e^{-x},\]
\[u(0,t)=0. \]