Solution:
The function \(f(x) = x\) is odd on the interval \( (-\pi, \pi]\). Hence the Fourier series for \( f(x)\) has the simple form
where the \(b_n\) are calculated using integration by parts:
where we have used \(\cos(n\pi) = (-1)^n\). Therefore,
Solution:
Parseval's identity states that if \(f(x)\) has a Fourier series
then
Since \(a_0,a_n = 0\) for every \(n = 0,1,2,3,\cdots\) we have
so in particular
Solution:
By Parseval's identity, we obtain
which simplifies to
Solution:
\[\begin{align*} \int_{-L}^{L} \left(f(x) - S_n(x)\right)^2\,dx &=\int_{-L}^L (f(x))^2\,dx -2\int_{-L}^L f(x)S_n(x)\,dx + \int_{-L}^L (S_n(x))^2\,dx \end{align*} \]
Expanding the middle term, we get
\[\int_{-L}^L f(x)S_n(x)\,dx = \int_{-L}^L f(x)\left( \frac{a_0}{2}+\sum_{m=1}^n\left[a_m\cos\left(\frac{m\pi}{L}x\right) + b_m\sin\left(\frac{m\pi}{L}x\right)\right] \right)\,dx \]
Using the definition of \(a_0\), the first term above yields
\[\frac{a_0}{2}\int_{-L}^L f(x)\,dx = L {a_0^2}. \]
The second term above gives, after interchanging the integral and the sum and using the definition of \(a_m\)
\[\sum_{m=1}^n a_m\int_{-L}^L f(x)\cos\left(\frac{m\pi}{L}x\right)\, dx = La_m^2\]
Similarly, the last sum gives
\[\sum_{m=1}^n b_m\int_{-L}^L f(x)\sin\left(\frac{m\pi}{L}x\right)\, dx = Lb_m^2\]
Therefore,
\[\int_{-L}^L f(x)S_n(x)\,dx = L\left(\frac{a^2_0}{2}+\sum_{m=1}^n[a_m^2+b_m^2] \right) \].
Now consider the expansion of \(S^2_n(x)\). Due to the orthogonality of the Fourier series basis functions, we get
\[\int_{-L}^L S^2_n(x)\,dx = \int_{-L}^L \frac{a^2_0}{4}\,dx + \sum_{m=1}^n\int_{-L}^L \left[a_m^2\cos^2 \left(\frac{m\pi}{L}x\right) + b_m^2\sin^2 \left(\frac{m\pi}{L}x\right)\right]\,dx\]
Using the trig identities
\[\cos^2 (x) = \frac{1}{2}[1+\cos(2x)]\] \[\sin^2(x) = \frac{1}{2}[1-\cos(2x)]\]
we obtain finally
\[ \int_{-L}^L S^2_n(x) dx = L\left(\frac{a_0}{2} +\sum_{m=1}^n [a_m^2 + b_m^2]\right) \]
This shows that
\[\int_{-L}^L f(x)S_n(x)\,dx = \int_{-L}^L S^2_n(x)\, dx\]
Hence,
\[\int_{-L}^L \left(f(x) - S_n^2(x)\right)^2\,dx = \int_{-L}^L (f(x))^2\,dx - L\left(\frac{a_0}{2} +\sum_{m=1}^n [a_m^2 + b_m^2]\right) \]
The right hand side is an integral of a positive function, which is positive. Therefore
\[ L\left(\frac{a_0}{2} +\sum_{m=1}^n [a_m^2 + b_m^2]\right) \leq \frac{1}{L}\int_{-L}^L (f(x))^2\,dx. \]
Solution:
The Fourier Transform of a function \(f(x)\) is given by
$$\widehat{f}(\mu) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty f(x)e^{i\mu x}\,dx $$
In this case, we have
$$\begin{align*} \widehat{f}(\mu) &= \frac{1}{\sqrt{2\pi}}\int_{-1}^1 e^{i\mu x}\,dx \\ & = \frac{1}{\sqrt{2\pi}}\int_{-1}^0 e^{i\mu x}\, dx + \frac{1}{\sqrt{2\pi}}\int_0^1 e^{i\mu x}\, dx \\ & = \frac{1}{\sqrt{2\pi}}\int_{0}^1 \left( e^{-i\mu x} + e^{i\mu x}\right)\,dx \\ & = \frac{2}{\sqrt{2\pi}} \int_0^1 \cos(\mu x)\, dx \\ & = \sqrt{\frac{2}{\pi}}\frac{\sin(\mu x)}{\mu} \end{align*} $$