
University Of Zimbabwe

MTE201: Engineering Mathematics 2

Section: Fourier Series and Partial Differential

Equations

Block A: Aug-Sept 2022

Lecturer:
Dr. S. Kapita

Department:
Mathematics and Comuputational Sciences

1



Course Outline

• Fourier series

• Orthogonal relations and the Euler formula for the coefficients

• Bessel’s inequality and Parseval’s identity

• Fourier series of even and odd functions

• The Fourier transform, inverse transform, convolutions

• Application of Fourier series and transforms to Partial Differential Equations.
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1 Introduction to Fourier Series

A function f of a real variable is said to be periodic with period 2L if

f(x+ 2L) = f(x)

holds for all x ∈ R.
A function f is said to satisfy the Dirichlet conditions if the following three conditions
hold for f on any one period (e.g. on [−L,L] or [0, 2L] etc)

1. The function |f(x)| can be integrated over a period and the integral is finite.

2. The function f has a finite number of maxima and minima in any one period.

3. The function f has a finite number of discontinuities in any one period, and the
discontinuities are finite.

If f is a periodic function that satisfies the Dirichlet conditions, then at any point x
where f is continuous, f(x) is equal to the sum of its Fourier series:

f(x) =
a0
2

+
∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
.

where the coefficients (amplitudes) an and bn for frequencies n = 0, 1, 2, · · · depend on
the function f , and will be derived in the next section.

If f(x) has a discontinuity at a point x, then the Fourier series will converge to the
average of the left limit f(x−) and the right limit f(x+)

f(x−) + f(x+)

2
=

a0
2

+
∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
.

When the period of the function is 2π then the Fourier series can be simplified:

f(x) =
a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx) .

1.1 Orthogonality

There is a nice integral formula for finding the coefficients an and bn of a Fourier series.
This is based on the orthogonality of the functions

cos
nπx

L
, sin

mπx

L

for different values of n,m = 0, 1, 2, · · ·
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Theorem 1.1 (Orthogonality Relations) If m,n = 0, 1, 2, 3, · · · , then∫ L

−L

cos
nπx

L
cos

mπx

L
dx =

{
Lδn,m if m,n ≥ 1

2L, if n = m = 0.∫ L

−L

sin
nπx

L
sin

mπx

L
dx =

{
Lδn,m if m,n ≥ 1

0, if n = m = 0.∫ L

−L

sin
nπx

L
cos

mπx

L
dx = 0 for all m,n = 0, 1, 2, · · · .

where

δn,m =

{
1, if m = n

0, otherwise.

Proof: Assignment.

1.2 Euler Formula for the Coefficients

Recall the Fourier series equation:

f(x) =
a0
2

+
∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
In this section, we will assume that the interval is fixed at [−L,L]. To find the values of
the coefficients a0, an and bn, simply multiply both sides of the equation by cos nπx

L
or

sin nπx
L

for any n = 0, 1, 2, 3, · · · and integrate from −L to L. Then using the orthogo-
nality relations, we get

an =
1

L

∫ L

−L

f(x) cos
nπx

L
dx

bn =
1

L

∫ L

−L

f(x) sin
nπx

L
dx

a0 =
1

L

∫ L

−L

f(x)dx

Remark: Some authors write the Fourier series as

f(x) = a0 +
∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
and the coefficient a0 as

a0 =
1

2L

∫ L

−L

f(x) dx.

This is just a matter of convention, the result is the same. Make sure to stick to one
convention!
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Example 1: Find the Fourier series representation of the periodic function

f(x) =

{
−1, if − π < x < 0

1, if 0 ≤ x < π.

Solution:
We need to determine the coefficients a0, an and bn

a0 =
1

π

∫ π

−π

f(x)dx

=
1

π

[∫ π

0

1 dx+

∫ 0

−π

−1 dx

]
=

1

π
[π − π]

= 0

an =
1

π

∫ π

−π

f(x) cosnxdx

=
1

π

[∫ π

0

cosnxdx−
∫ 0

−π

cosnxdx

]
=

1

nπ
sinnx

∣∣∣∣π
0

− 1

nπ
sinnx

∣∣∣∣∣
0

−π

= 0

bn =
1

π

∫ π

−π

f(x) sinnxdx

=
1

π

[∫ π

0

sinnxdx−
∫ 0

−π

sinnxdx

]
= − 1

nπ
cosnx

∣∣∣∣π
0

+
1

nπ
cosnx

∣∣∣∣∣
0

−π

= − 1

nπ
(cosnπ − cos 0) +

1

nπ
(cos 0− cos(−nπ))

= − 1

nπ
((−1)n − 1) +

1

nπ
(1− (−1)n)

=
2

nπ
(1− (−1)n)

=


4
nπ
, when n is odd

0, otherwise.
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(a) (b)

Figure 1: (a) function in Example 1 and Fourier series with n = 3 terms (b) n = 25
terms. Note the overshooting of the partial Fourier series near the points of discontinuity.

Therefore

f(x) =
4

π

(
sinx

1
+

sin 3x

3
+

sin 5x

5
+ · · ·

)
=

4

π

∞∑
n=1

sin(2n− 1)x

(2n− 1)
.

Example 2:

Find the Fourier series representation of the periodic function

f(x) = x2, − π < x < π.

Solution:

a0 =
1

π

∫ π

−π

x2dx =
1

3π
x3
∣∣∣π
−π

=
2

3
π2.

an =
1

π

∫ π

−π

x2 cosnxdx. We now apply integration by parts to the integral.

Let

u = x2, du = 2xdx, dv = cosnxdx, v =
1

n
sinnx.

Thus

an =
1

π

x2

n
sinnx

∣∣∣π
−π

− 2

nπ

∫ π

−π

x sinnxdx

= − 2

nπ

∫ π

−π

x sinnxdx. Applying integration by parts again,
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we have

u = x, du = dx, dv = sinnxdx, v = − 1

n
cosnx.

Thus

an = − 2

nπ

[
−x

n
cosnx

∣∣∣π
−π

+
1

n

∫ π

−π

cosnxdx

]
=

4

n2
(−1)n

bn = 0
(
since x2 sinnx is odd

)
The Fourier series for f is then

f(x) =
π2

3
+

∞∑
n=1

(−1)n
4

n2
cosnx

=
π2

3
− 4 cosx+ 4

cos 2x

22
− 4

cos 3x

32
+ · · · .

Fourier series can be used to find the values of certain infinite series. For example,
what is the value of the infinite sum?

1 +
1

22
+

1

32
+

1

42
+ · · ·

To find this sum, suppose that f(x) = x2 and x = π. Then f(x) = f(π) = π2.
Substituting this into the Fourier series above for f(x) = x2, we get

f(π) = π2 =
π2

3
+

∞∑
n=1

(−1)n
4

n2
cosnπ

=
π2

3
+

∞∑
n=1

(−1)2n
4

n2
( since cosnπ = (−1)n)

=
π2

3
+

∞∑
n=1

4

n2

Rearranging the last expression gives the formula:

π2

6
=

∞∑
n=1

1

n2
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(a) (b)

Figure 2: (a) f(x) = x2 and Fourier series with n = 1 (b) n = 5

1.3 Bessel’s Inequality and Parseval’s Identity

Let us consider the nth partial sum

Sn(x) =
a0
2

+
n∑

ℓ=1

(
aℓ cos

ℓπx

L
+ bℓ sin

ℓπℓ

L

)
,

of the Fourier series of f(x) defined over the interval −L ≤ x ≤ L. Then provided the

integral
∫ L

−L
[f(x)]2 dx exists and is finite, we have the result∫ L

−L

[f(x)− Sn(x)]
2 dx =

∫ L

−L

[f(x)]2 dx− 2

∫ L

−L

f(x)Sn(x)dx+

∫ L

−L

[Sn(x)]
2 dx

From the definition of the Fourier partial sum Sn(x) it follows that∫ L

−L

[Sn(x)]
2 dx =

∫ L

−L

[
a0
2

+
n∑

ℓ=1

(
aℓ cos

ℓπx

L
+ bℓ sin

ℓπx

L

)]2

dx.

The orthogonality of the sine and cosine functions reduces this to∫ L

−L

[Sn(x)]
2 dx =

∫ L

−L

a20
4
dx+

n∑
ℓ=1

[
a2ℓ

∫ L

−L

cos2
ℓπx

L
dx

]
+

n∑
ℓ=1

[
b2ℓ

∫ L

−L

sin2 ℓπx

L
dx

]

= L

[
a20
2

+
n∑

ℓ=1

(
a2ℓ + b2ℓ

)]

If f(x) is replaced by its Fourier series, a similar argument shows that∫ L

−L

f(x)Sn(x)dx = L

[
a20
2

+
n∑

ℓ=1

(
a2ℓ + b2ℓ

)]
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Combining the terms above gives∫ L

−L

[f(x)− Sn(x)]
2 dx =

∫ L

−L

[f(x)]2 dx− L

[
a20
2

+
n∑

ℓ=1

(
a2ℓ + b2ℓ

)]

The integral on the left is non-negative, because its integrand is a squared quantity, so
it follows at once that for all n

a20
2

+
n∑

ℓ=1

(
a2ℓ + b2ℓ

)
≤ 1

L

∫ L

−L

[f(x)]2 dx.

This is Bessel’s Inequality for Fourier series. When f(x) is square-integrable, i.e.∫ L

−L
[f(x)]2 dx exists and is finite, then the series

a20
2

+
n∑

ℓ=1

(
a2ℓ + b2ℓ

)
is convergent. Thus, the coefficients in the associated Fourier series must be such that

lim
n→∞

an = 0 and lim
n→∞

bn = 0.

If the nth partial sum Sn(x) converges to f(x) in the sense that

lim
n→∞

∫ L

−L

[f(x)− Sn(x)]
2 dx = 0,

then
1

L

∫ L

−L

[f(x)]2 dx =
a20
2

+
n∑

ℓ=1

(
a2ℓ + b2ℓ

)
.

This is known as the Parseval identity for the Fourier series.

1.4 Fourier Series of Even and Odd Functions

Recall that a function f(x) is even if f(−x) = f(x) and it is odd if f(−x) = −f(x) for
every x in the domain.

If f(x) is an even function defined on the interval −L ≤ x ≤ L, then

f(x) =
a0
2

+
∞∑
n=1

an cos
nπx

L
, with

a0 =
2

L

∫ L

0

f(x)dx

an =
2

L

∫ L

0

f(x) cos
nπx

L
dx, for n = 1, 2, · · · .
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(a) (b)

Figure 3: (a) f(x) = |x| and Fourier series with n = 1 (b) n = 5

If f(x) is an odd function, then

f(x) =
∞∑
n=1

bn sin
nπx

L
, with

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx, for n = 1, 2, · · · .

Example 3:

Find the Fourier series representation of

f(x) = |x|, on the interval − L ≤ x ≤ L

Solution
The function f(x) = |x| is defined as:

|x| =


−x, if x < 0

x, if x ≥ 0

The Fourier coefficients of f(x) are calculated as follows:
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a0 =
2

L

∫ L

0

x dx = L

and

an =
2

L

∫ L

0

x cos
nπx

L
dx (integration by parts)

=
2

L

[
L2 cos nπx

L

n2π2

] ∣∣∣∣∣
L

0

=
2L

n2π2

[
(−1)n − 1

]
, for n = 1, 2, · · ·

=

 − 4L
n2π2 , when n is odd

0,when n ̸= 0, is even.

Thus, the Fourier series representation of f(x) = |x| for −L ≤ x ≤ L is

f(x) =
L

2
− 4L

π2

[
cos πx

L

12
+

cos 3πx
L

32
+

cos 5πx
L

52
+ · · ·

]
.

The sequence of positive odd numbers can be written in the form 2n−1 with n = 1, 2, · · · ,
so the last result can be expressed more concisely as

f(x) =
L

2
− 4L

π2

∞∑
n=1

1

(2n− 1)2
cos

(2n− 1)πx

L
, for− L ≤ x ≤ L.

Example 4:
Find the Fourier series representation of f(x) = x on the interval −2 ≤ x ≤ 2

Solution
Using the fact that L = 2,

bn =

∫ 2

0

x sin
nπx

2
dx = − 4

nπ
cosnπ =

4

nπ
(−1)n+1

and as the function is odd all the coefficients an = 0. The required Fourier series
representation is

f(x) =
4

π

[
sin

πx

2
− 1

2
sin πx+

1

3
sin

3πx

2
− · · ·

]
,

which can be written in the more concise form

f(x) =
4

π

∞∑
n=1

(−1)n+1

n
sin

nπx

2
, for− 2 ≤ x ≤ 2.
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(a) (b)

Figure 4: (a) Example 4: f(x) = x and Fourier series on the interval [−2, 2] with n = 3
(b) n = 15

2 The Fourier Transform

2.1 Fourier transforms as integrals

There are several ways to define the Fourier transform of a function f : R → C. In this
section, we define it using an integral representation and state some basic uniqueness
and inversion properties, without proof.

Definition 2.1 Let f : R → R. The Fourier transform of f(x), denoted by F (µ) =
F [f(x)], is given by the integral

F (µ) = F [f(x)] =
1√
2π

∫ ∞

−∞
f(x)e−iµxdx,

for x ∈ R for which the integral exists.

We have the Dirichlet condition for inversion of Fourier integrals.

Theorem:
Let f : R → R. Suppose that

1.
∫∞
−∞ |f(x)|dx converges and

2. in any finite interval, f, f ′ are piece-wise continuous with at most finitely many
maxima/minima/discontinuities.

Let F (µ) = F [f(x)]. Then if f(x) is continuous at x ∈ R, we have the Fourier Inver-
sion formula

f(x) =
1√
2π

∫ ∞

−∞
F (µ)eixµdµ.
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Moreover, if f is discontinuous at x ∈ R and f(x+) and f(x−) denote the right and left
limits of f at x, then

f(x+) + f(x−)

2
=

1√
2π

∫ ∞

−∞
F (µ)eixµdµ.

Note that the formula above automatically holds if f is continuous at x, since f(x+) =
f(x−).

Example 1:

Find the Fourier transform of f(x) = e−|x| and hence using inversion, deduce that∫ ∞

0

dµ

1 + µ2
=

π

2
and

∫ ∞

0

µ sinµx

1 + µ2
dµ =

π

2
e−x, x > 0.

Solution:
We write

F (µ) =
1√
2π

∫ ∞

−∞
f(x)e−iµxdx

=
1√
2π

∫ ∞

−∞
e−|x|e−iµx dx

=
1√
2π

[∫ 0

−∞
exe−iµx dx+

∫ ∞

0

e−xe−iµx dx

]
=

1√
2π

[∫ 0

−∞
e(1−iµ)xdx+

∫ ∞

0

e−(1+iµ)xdx

]

=
1√
2π

e(1−iµ)x

1− iµ

∣∣∣∣∣
0

−∞

− e−(1+iµ)x

1 + iµ

∣∣∣∣∣
∞

0


=

1√
2π

[
1

1− iµ
+

1

1 + iµ

]
=

1√
2π

[
(1 + iµ) + (1− iµ)

(1− iµ)(1 + iµ)

]
=

2√
2π

1

1 + µ2

=

√
2

π

[
1

1 + µ2

]
.
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Now by the inversion formula,

e−|x| =
1√
2π

∫ ∞

−∞
F (µ)eixµdµ

=
1

π

∫ ∞

−∞

1

1 + µ2
eixµdµ

=
1

π

[∫ 0

−∞
eixµ

1

1 + µ2
dµ+

∫ ∞

0

eixµ
1

1 + µ2
dµ

]
=

1

π

∫ ∞

0

e−ixµ + eixµ

1 + µ2
dµ

(
since cosu =

1

2

(
eiu + e−iu

))
=

2

π

∫ ∞

0

cosµx

1 + µ2
dµ.

now this formula holds at x = 0, so substituting x = 0 into the above gives the first
required identity. Differentiating under the integral with respect to x as we may for
x > 0, gives the second required identity.

2.2 Properties of the Fourier transform

Recall the definition of Fourier transform:

F [f(x)] = F (µ) =
1√
2π

∫ ∞

−∞
f(x)e−iµxdx

1. F [·] is a linear operator. For a, b ∈ R we have

F [af1(x) + bf2(x)] = aF [f1(x)] + bF [f2(x)] = aF1(µ) + bF2(µ)

2. the Fourier Transform exchanges differentiation with multiplication: F [f ′(x)] =
iµF (µ).
In general F [fn(x)] = (iµ)nF (µ).

Example 2:

Find the Fourier transform of the function

f(x) =


e−x sinx, if x > 0

0, if x < 0.

Solution:
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(complete the missing steps)

F (µ) =
1√
2π

∫ ∞

−∞
f(x)e−iµxdx

=
1√
2π

∫ ∞

−∞
e−x sinxe−iµxdx

=

.

.

.

=
1√
2π

[
1

1 + (1 + iµ)2

]
.

2.3 Fourier Transform of a Convolution

Definition 2.2 The convolution of f and g is the function f ∗ g defined by

(f ∗ g)(x) =
∫ ∞

−∞
f(t)g(x− t)dt.

Note also that

(f ∗ g)(x) =
∫ ∞

−∞
g(t)f(x− t)dt = (g ∗ f)(x)

as can be shown by a change of variable.

Theorem: [Convolution theorem]

F [(f ∗ g)(x)] =
√
2πF (µ)G(µ).

Proof: Assignment

2.4 Fourier Sine and Cosine Transforms

The Fourier Cosine Transformation Fc[f(·)] and Fourier Sine Transformation Fs[f(·)] of
f : R → R are defined as follows,

Fc[f(·)] = Fc(µ) =

√
2

π

∫ ∞

0

f(x) cosµx dx

Fs[f(·)] = Fs(µ) =

√
2

π

∫ ∞

0

f(x) sinµx dx

Example

Find the Fourier Cosine and Sine transforms of the function f(x) = e−ax, a > 0, x > 0.
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Solution

Fc(µ) =

√
2

π

∫ ∞

0

f(x) cosµxdx

=

√
2

π

∫ ∞

0

e−ax cosµxdx

=

√
2

π

∫ ∞

0

e−ax

(
eiµx + e−iµx

2

)
dx

=
1

2

√
2

π

∫ ∞

0

(
e−(a−iµ)x + e−(a+iµ)x

)
dx

=
1

2

√
2

π

[
− 1

(a− iµ)
e−(a−iµ)x − 1

(a+ iµ)
e−(a+iµ)x

] ∣∣∣∣∣
∞

0

=
1

2

√
2

π

[
1

(a− iµ)
+

1

(a+ iµ)

]
=

1

2

√
2

π

[
2a

a2 + µ2

]
=

√
2

π

[
a

a2 + µ2

]
Similarly, (complete the missing steps)

Fs(µ) =

√
2

π

∫ ∞

0

f(x) sinµxdx

=

√
2

π

∫ ∞

0

e−ax sinµxdx

=

√
2

π

∫ ∞

0

e−ax

(
eiµx − e−iµx

2i

)
dx

=

.

.

.

=

√
2

π

[
µ

a2 + µ2

]
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3 Application to Partial Differential Equations

Fourier transforms are used to convert linear partial differential equations into ordinary
differential equations. This is possible because Fourier transforms convert derivatives
into polynomial multiplication. The resultant ordinary differentiall equation can then
be resolved by standard ODE techniques.

3.1 Heat Equation for an Infinite Rod

Consider the Initial Value Problem (IVP)

ut(x, t)− kuxx = 0, −∞ < x < ∞, t > 0, k > 0

u(x, 0) = f(x)

Let

F [u(x, t)] = U(µ, t) =
1√
2π

∫ ∞

−∞
u(x, t)e−iµxdx,

be the Fourier transform of u(x, t) with respect to the x-variable, and let

F−1[U(µ, t)] = u(x, t) =
1√
2π

∫ ∞

−∞
U(µ, t)eiµxdµ,

be its inversion formula.
Taking the Fourier transform of the PDE,

F [ut(x, t)]− kF [uxx(x, t)] = F [0],

since F is a linear operator, and interchanging the time derivative with the integral, we
obtain

∂

∂t
U(µ, t) + kµ2U(µ, t) = 0

The above equation for a fixed value µ is an ordinary differential equation in t which we
solve to obtain

U(µ, t) = A(µ)e−kµ2t, A(µ) arbitary function.

Taking Fourier transform of the initial condition and setting t = 0, we get

U(µ, 0) = A(µ) = F (µ)

where

F (µ) :=
1√
2π

∫ ∞

−∞
f(x)e−iµx dx

is the Fourier transform of the initial data f(x). Therefore

U(µ, t) = F (µ)e−kµ2t
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To determine u(x, t), we use the inversion formula

u(x, t) =

∫ ∞

−∞
U(µ, t)eiµxdµ

=

∫ ∞

−∞
F (µ)e−kµ2teiµxdµ,

where F (µ) =
1√
2π

∫ ∞

−∞
f(y)e−iµydy, thus

u(x, t) =
1√
2π

∫ ∞

−∞

∫ ∞

−∞
f(y)e−iµ(y−x)e−kµ2tdydµ.

3.2 Half Range Problems

We now consider applications that involve the use of Fourier sine or cosine transforms

1. Fourier sine/cosine transforms can be used when the transformed variable is re-
stricted to a semi-infinite interval.

2. The choice of the cosine-sine transform is dictated by the boundary condition

Recall

Fc[f(x)
′′] = −

√
2

π
f ′(0)− µ2Fc(µ)

Fs[f(x)
′′] =

√
2

π
µf(0)− µ2Fs(µ)

One can prove the following

Fc[uxx(x, t)] = −
√

2

π
ux(0, t)− µ2Uc(µ)

Fs[uxx(x, t)] =

√
2

π
µUs(0, t)− µ2Us(µ)

Now we not that

Fc

[
∂u(x, t)

∂t

]
=

∂Uc(µ, t)

∂t

and

Fs

[
∂u(x, t)

∂t

]
=

∂Us(µ, t)

∂t

Remarks:

1. the Fourier cosine transform is useful when ux(0, t) is defined in the problem.
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2. the Fourier sine transform is useful when u(0, t) is defined in the problem.

Example

Consider the diffusion equation (heat equation)

ut(x, t)− kuxx(x, t) = 0, 0 < x < ∞, t > 0

I.C. u(x, 0) = f(x), 0 < x < ∞, t > 0

B.C. u(0, t) = g(t), t > 0.

Solution

We choose the Fourier sine transform in x since the temperature at x = 0, u(0, t) = g(t)
is provided. Taking the Fourier sine transform of the PDE with respect to the x variable,
we obtain

∂Us(µ, t)

∂t
− k

[√
2

π
µu(0, t)− µ2Us(µ)

]
= 0

⇒ ∂Us(µ, t)

∂t
+ kµ2Us(µ)−

√
2

π
kµu(0, t) = 0

⇒ ∂Us(µ, t)

∂t
+ kµ2Us(µ) =

√
2

π
kµg(t)

Solving the ODE above, we obtain

Us(µ, t) =

√
2

π
kµe−kµ2t

∫
g(t)ekµ

2tdt+ A(µ)e−kµ2t

=

√
2

π
kµ

∫ t

0

g(τ)e−kµ2(t−τ) dτ + A(µ)e−kµ2t

setting t = 0, we obtain

Us(µ, 0) = A(µ) = Fs(µ)

⇒ Us(µ, t) = Fs(µ)e
−kµ2t +

√
2

π
kµ

∫ t

0

g(τ)e−kµ2(t−τ) dτ

and the solution is the inverse sine transform of Us(µ, t). The inversion formula of
Us(µ, t) yields the solution u(x, t) as

u(x, t) =

√
2

π

∫ ∞

0

Us(µ, t) sinµx dµ

=

√
2

π

∫ ∞

0

Fs(µ)e
−kµ2t sinµx dµ+

2

π
k

∫ ∞

0

∫ t

0

µg(τ)e−kµ2(t−τ) sinµx dµ dτ

=
2

π

∫ ∞

0

∫ ∞

0

f(s)e−kµ2t sinµs sinµx dµ ds+
2

π
k

∫ t

0

∫ ∞

0

µg(τ)e−kµ2(t−τ) sinµx dµ dτ,

which is the integral representation of the solution u(x, t) in terms of the data u(x, 0) =
f(x) and u(0, t) = g(t).
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