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e Fourier series

Orthogonal relations and the Euler formula for the coefficients

Bessel’s inequality and Parseval’s identity

Fourier series of even and odd functions

The Fourier transform, inverse transform, convolutions

Application of Fourier series and transforms to Partial Differential Equations.



Contents

1 Introduction to Fourier Series
1.1 Orthogonality . . . . . . . . . . . .. ..
1.2 Euler Formula for the Coefficients . . . . . . . . . . . .. ... ... ...
1.3 Bessel’s Inequality and Parseval’s Identity . . . . .. ... ... .. ...
1.4 Fourier Series of Even and Odd Functions . . . . . . ... ... .. ...

2 The Fourier Transform
2.1 Fourier transforms as integrals . . . . . . . ... ...
2.2 Properties of the Fourier transform . . . . . . . ... ... ... ... ..
2.3 Fourier Transform of a Convolution . . . . . . .. ... ... ... ....
2.4 Fourier Sine and Cosine Transforms . . . . . . . . .. ... ... .. ...

3 Application to Partial Differential Equations
3.1 Heat Equation for an Infinite Rod . . . . . . .. ... ... ... .....
3.2 Half Range Problems . . . . . . .. ... ... ... .



1 Introduction to Fourier Series

A function f of a real variable is said to be periodic with period 2L if

flz+2L) = f(z)

holds for all x € R.
A function f is said to satisfy the Dirichlet conditions if the following three conditions
hold for f on any one period (e.g. on [—L, L] or [0,2L] etc)

1. The function |f(z)| can be integrated over a period and the integral is finite.
2. The function f has a finite number of maxima and minima in any one period.

3. The function f has a finite number of discontinuities in any one period, and the
discontinuities are finite.

If f is a periodic function that satisfies the Dirichlet conditions, then at any point x
where f is continuous, f(x) is equal to the sum of its Fourier series:

nmwT
LcosZ L p, —> .
+ Z (a cos —i— sin 7

where the coefficients (amplitudes) a, and b, for frequencies n = 0,1,2,--- depend on
the function f, and will be derived in the next section.

If f(x) has a discontinuity at a point z, then the Fourier series will converge to the
average of the left limit f(z~) and the right limit f(x™)

f(@ )—;—fx* = —l—Z(ancos + by, sm?)

When the period of the function is 27 then the Fourier series can be simplified:

Mg

+ (a,, cosnx + b, sinnx) .

%
2

n=1

1.1 Orthogonality

There is a nice integral formula for finding the coefficients a,, and b,, of a Fourier series.
This is based on the orthogonality of the functions
nmwx . mmx
cos —, sin
L

L

for different values of n,m =0,1,2,---



Theorem 1.1 (Orthogonality Relations) If m,n=0,1,2,3,---, then

/L nmwx mmx {L5n,m ifm,n>1
COS —— COS dr =

2L, ifn=m=0.

/L L T mTT Léynm ifm,n>1
Tr =
0, ifn=m=0.

L
/ sin@cosmmgdazz() for allm,n=20,1,2,---
I L L

where

5o — {1, me:n

0, otherwise.

Proof: Assignment.

1.2 Euler Formula for the Coefficients

Recall the Fourier series equation:

nmwx
z w05 ™2 1y 5in 72
—|— (a cos —|— Sin I

In this section, we will assume that the interval is fixed at [—L, L]. To find the values of

n7ra:

the coefficients aq, a,, and b, snnply multiply both sides of the equation by cos % or
sin #7* for any n = 0,1,2,3,--- and integrate from —L to L. Then using the orthogo—
nahty relations, we get

nmwx

an, = —/ f(z cos—dx
b, = / f(x sin@dx

ag = Z/_Lf(:z:)d:z:

Remark: Some authors write the Fourier series as

> nmx nmx
x)=ag+ Z (an CoS —— 7 + b, sin —)
—1

L
1 L
—L/Lf(x) dx

This is just a matter of convention, the result is the same. Make sure to stick to one
convention!

and the coefficient aq as



Example 1: Find the Fourier series representation of the periodic function

Solution:

ﬂ@:{_L if —m<z<0

1, ifo<z<m.

We need to determine the coefficients ag, a,, and b,

Qg

/:ﬂ@m

[ f o

SIS
E)}
|
A,

—/ f(z) cosnxdx
™ —T

1 0
— [ / cosnxdr — / CoS nmdx}
™ 0 —Tr

0

T

— —sinnx
g nmw

—sinnx
nmw

0

l/7r f(z) sinnzdx

ﬂ— —Tr

i 0
1
- { / sin nxdr — / sin n:vd:v}
™ 0 —T

0
1 T 1
——cosnx| + —cosnx
nmw g nm

—T

1 1
—— (cosnm — cos0) + — (cos 0 — cos(—n))

() ) (- (1))
2 - (-1

4 when n is odd

nm’

0, otherwise.
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Figure 1: (a) function in Example 1 and Fourier series with n = 3 terms (b) n = 25
terms. Note the overshooting of the partial Fourier series near the points of discontinuity.

Therefore
4 (sinx sin3dxz sindx
f(m)_%<1+3+5 )
B 4ism n—l
oo (2n —1)
n=1
Example 2

Find the Fourier series representation of the periodic function

flx)=2% —m<z<m.
Solution: | g ) 5
ag = —/ 2dr = —13 = 72,
T J) _n 3 lex 3
L[, . . .
ap, = — x* cosnxdx. We now apply integration by parts to the integral.
™ —T
Let
u=2% du=2xdz, dv= cosnzdr, v=—sinnz.
n
Thus
122 . ™ 2 [T .
a, = ——sinnr| — — x sinnxdr
™n -7 nm
2 ™
= —— xsinnzdr. Applying integration by parts again,
nm

-



we have

u=ux, du=dxr, dv=sinnxdr, v = ——cosnz.
n
Thus
2 [ T ™ 1/7r }
a, = —— |——cosnx| + — cos nrdx
nm n -7 nJ_»
4 n
= ﬁ(—l)
b, = 0 (since z?sinnzx is odd)

The Fourier series for f is then

flz) = W—2+§:(—1)”icosm:
N 3 n=1 n?

w2 cos 2x cos 3x
= — 4 4 —4
3 cosT + 52 32

Fourier series can be used to find the values of certain infinite series. For example,
what is the value of the infinite sum?

To find this sum, suppose that f(x) = z? and z = 7. Then f(z) = f(x) = 7%

Substituting this into the Fourier series above for f(x) = 22, we get
w2 = 4
f(m)=m* = ey + ;(—1)”E cos N
2 - 4
= 3 + ;(—1)2"5 ( since cosnm = (—1)")
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Figure 2: (a) f(z) = 2* and Fourier series withn =1 (b) n =5

1.3 Bessel’s Inequality and Parseval’s Identity

Let us consider the n** partial sum

4y
—1—2 (agcos— +bgsmT> ,

of the Fourier series of f(z) defined over the interval —L < 2 < L. Then provided the
integral f (z)]? dz exists and is finite, we have the result

/_LL [f(a:)—Sn(x)]zdx:/_ da:—2/ fa da:+/_LL (S, (2)]? da

From the definition of the Fourier partial sum S, (x) it follows that

/LL 1S (2)]? dx = / o Z (ag cos =X 4 b,sin %)] i L.

The orthogonality of the sine and cosine functions reduces this to

/_LL (S, (x)]Pde = /_ de+2{ag/ cos Td:c] +Z {bg /_LLsm2 &TTxdx]
%+;(a3+b?)

If f(x) is replaced by its Fourier series, a similar argument shows that

/_I;f(x)S x)d

= L

_%+Z ae+b€




Combining the terms above gives

T
5+ (i +2i)
(=1

/ (@) - Sula)Pda = / f@Pde— L

L —L

The integral on the left is non-negative, because its integrand is a squared quantity, so
it follows at once that for all n

2 n 1 L )
%+;(a§+b§) gz/ (@) da.

—L

This is Bessel’s Inequality for Fourier series. When f(x) is square-integrable, i.e.
ffL [f(x)]? dx exists and is finite, then the series

2 n
DY (@ +1)
(=1

is convergent. Thus, the coefficients in the associated Fourier series must be such that

lim a, =0 and lim b, = 0.
n—oo n—oo

If the n'* partial sum S, (z) converges to f(z) in the sense that

lim [f(z) — Sp(2)])* dz = 0,

n—oo |
then

i | e %Jr;(a?erf).

—L

This is known as the Parseval identity for the Fourier series.

1.4 Fourier Series of Even and Odd Functions
Recall that a function f(x) is even if f(—xz) = f(x) and it is odd if f(—x) = —f(z) for

every z in the domain.
If f(x) is an even function defined on the interval —L < x < L, then

flx) = %%—Zancos?, with

n=1
= 2 [ s
a = 7 i x)dx
9 L
an, = Z/o f(x)cos?dx, forn=1,2---.

10
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Figure 3: (a) f(x) = |z| and Fourier series with n =1 (b) n =15

If f(x) is an odd function, then
flx) = ansin n—zx, with
n=1

9 (L
b, = E/o f(:zc)sinn—zxda:, forn=1,2,---.
Example 3:

Find the Fourier series representation of
f(z) =|z|, on the interval — L <x <L

Solution
The function f(x) = |z| is defined as:

—x, ifx<0
|z =

x, ifz>0

The Fourier coefficients of f(x) are calculated as follows:

11



9 [L
ag = T /0 rdr=1L
and
9 [L
a, = — / 2 cos 22 (integration by parts)
L/ L

L
2 {LZ cos T}

L n?m?
2L i
- S [(—1) _ 1}, forn—=1,2,-.

—%, when n is odd

0, when n # 0, is even.

Thus, the Fourier series representation of f(z) = |z| for —L < x < L is

L 4L [cosZE  cosTL  cos 2%
f(x)zi_ﬁ[ 2 2 T3

The sequence of positive odd numbers can be written in the form 2n—1 withn = 1,2, - -,
so the last result can be expressed more concisely as

L 4L & 1 (2n — 1)z
J@)=5-= <@n—12" L

for— L<x<L.

Example 4:
Find the Fourier series representation of f(z) = x on the interval —2 <z <2

Solution
Using the fact that L = 2,

2
4 4

by = / 2 sin ot dy = —— cos T = — (=)™
0 2 nw nmw

and as the function is odd all the coefficients a,, = 0. The required Fourier series
representation is

f(x) 41 . 7 1 | +1 . 37z
r)=—|[Sll— — —sIn7wxr + —sin—— — - -
T g P g )

which can be written in the more concise form

4 S (-1 nma
— for — 2 < g <2.
f(z) - nE_l " sin T or <z<

12
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Figure 4: (a) Example 4: f(z) = z and Fourier series on the interval [—2,2] with n = 3
(b) n =15

2 The Fourier Transform

2.1 Fourier transforms as integrals

There are several ways to define the Fourier transform of a function f : R — C. In this
section, we define it using an integral representation and state some basic uniqueness
and inversion properties, without proof.

Definition 2.1 Let f : R — R. The Fourier transform of f(x), denoted by F(u) =
Flf(z)], is given by the integral

1 e —ipux
F) = FUf@) = 7= [ fw)e s,
for x € R for which the integral exists.

We have the Dirichlet condition for inversion of Fourier integrals.

Theorem:
Let f : R — R. Suppose that

1. [Z |f(z)|dz converges and

2. in any finite interval, f, f' are piece-wise continuous with at most finitely many
maxima/minima/discontinuities.

Let F(u) = F[f(x)]. Then if f(x) is continuous at x € R, we have the Fourier Inver-

sion formula
1 e ,
T) = — Fup)e™ du.
fla) === [ Py

13



Moreover, if f is discontinuous at € R and f(z") and f(z~) denote the right and left
limits of f at x, then
flz™)+ f(a™ 1 e
(#) + ) _ -
2 V2T J oo
Note that the formula above automatically holds if f is continuous at x, since f(x1) =

f@™).

e Hdy.

Example 1:

Find the Fourier transform of f(z) = e~1*l and hence using inversion, deduce that

< du T /Oopsin/m: T _
— and dpu=—=e*, x>0.
/0 1+2 2 o 1tz Mo

Solution:
We write

Je e dr

88

i g

TN
.

08

oo
eTe T dx—l—/ e Te T dm}
0

/ (=i gy 4 / ) e_(l““)”ﬁdx]
0

e(l—ip)x

1—1ip

e—(l-i-iu)x

1+ip o

'<1+w>+<1—w>]
| (I —ip)(1 +ip)

—_

\/_
V2

1
Vaor

1
Vaor

1
Vaor

1 [ 1 1
Vor _1—iﬂ+1+i/ﬁ}
1
Ve

2
Vaor

2
/2
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Now by the inversion formula,

e

— ||

1 o ,
— F(u)e™d
V 27T /oo ) M
1 [ 1 ,

T ) o1+ ;ﬂ

I A

- etrH

m [/oo 1+ p?
1 /OO efzx,u + em,u
T Jo 1+p

2/ COS [T
T Jo

1+ p2

djt.

/ 1+u “}

(smce cosu = % (eiu + e—iu))

now this formula holds at x = 0, so substituting x = 0 into the above gives the first

required identity.

x > 0, gives the second required identity.

Differentiating under the integral with respect to x as we may for

2.2 Properties of the Fourier transform

Recall the definition of Fourier transform:

Flf(@)] = F(u

>=¢%/_Zf<x>e

T

1. F[] is a linear operator. For a,b € R we have

Flafi(x) +bfa(x)] = aF[f1(2)] + bF[fo(2)] = aFi(p) + bF2(p)

2. the Fourier Transform exchanges differentiation with multiplication: F[f’(z)] =
ipF ().

In general F[f"(z)] =

Example 2

(2p)" F ().

Find the Fourier transform of the function

Solution:

e—l‘

fx) =

sinz, if x >0

0, if x < 0.

15



(complete the missing steps)

Fo) = o= [ e

o0
= —/ e Tsinxe " dx

1 1
 Vor {1+<1+w>2} '
2.3 Fourier Transform of a Convolution

Definition 2.2 The convolution of f and g is the function f x g defined by

T = [ regte - o
Note also that

(f * g)(x) = / g0 — )t = (g % )(2)

o0

as can be shown by a change of variable.

Theorem: [Convolution theorem)]
FI(f *9)()] = V2rF ()G (n).

Proof: Assignment

2.4 Fourier Sine and Cosine Transforms

The Fourier Cosine Transformation F.[f(-)] and Fourier Sine Transformation F,[f(-)] of
f R — R are defined as follows,

FIFO) = ch):\@ / " b ) cos pa d

IO = B =2 [ ssin as

Example

Find the Fourier Cosine and Sine transforms of the function f(z) =e %, a > 0, z > 0.

16



Solution

2 [e.e]
R = 2 [ 1) eospads
2 o
= \/i/ e " cos pxdx
wm —iuT
()
_ \/>/ (a—ip)z _|_€f(a+iu)x) dr

_ _\/i b i 1 e—(am)x}
2V 7| (a—w)  (a+ip)

N I S 1
2V [(a—ip)  (a+ip)

1 \/5 [ 2a
2V 7w a4 p?
B \/5 a
- 7 | a? + p2
Similarly, (complete the missing steps)
2 [ i
Fw = 2 [ s
T™Jo
2 o
= \/j/ e *sin prdx
—ipx
= \/7 / ( .e )d:v
2i

[e.e]

0

17



3 Application to Partial Differential Equations

Fourier transforms are used to convert linear partial differential equations into ordinary
differential equations. This is possible because Fourier transforms convert derivatives
into polynomial multiplication. The resultant ordinary differentiall equation can then
be resolved by standard ODE techniques.

3.1 Heat Equation for an Infinite Rod
Consider the Initial Value Problem (IVP)

w(z,t) — kg, = 0, —co<az<oo, t>0, k>0

u(z,0) /()

Let
Flu(z,t)] = U, t) = \/% /_ u(w, e dy,

be the Fourier transform of u(z,t) with respect to the z-variable, and let

FUGt] = ulet) == [ UGy,

be its inversion formula.
Taking the Fourier transform of the PDE,

Flug(x,t)] — kF[uge(z,t)] = F[0],

since F is a linear operator, and interchanging the time derivative with the integral, we
obtain

)
57U (s t) + kiU (p, 1) = 0

The above equation for a fixed value p is an ordinary differential equation in ¢ which we
solve to obtain
2
Ulp,t) = A(p)e ™t A(u) arbitary function.

Taking Fourier transform of the initial condition and setting t = 0, we get

U(p,0) = A(p) = F(p)

where

F(p) = \/LQ_W /_OO fz)e ™ dx

is the Fourier transform of the initial data f(x). Therefore

Up,t) = Fp)e

18



To determine u(z,t), we use the inversion formula

uwt) = [ UGnterdn

o0

- [ e,

o0

1 o -
where F(p) = —/ f(y)e *"dy, thus
V2T J o

1 R e . 2
uat) = = [ [ tweere gy,

3.2 Half Range Problems

We now consider applications that involve the use of Fourier sine or cosine transforms

1. Fourier sine/cosine transforms can be used when the transformed variable is re-
stricted to a semi-infinite interval.

2. The choice of the cosine-sine transform is dictated by the boundary condition

Recall
Felf(2)"] = _\/gf/(())_HQFc(H)
Filf(@)"] = \/guf(o)—/fl’s(u)
One can prove the following
Feltaa(z, )] = _\/gux(()?t)_/ﬁ[]c(“)
Foltza (2, )] = \/%MUS(OJ)—HQUS(M)

Now we not that ) }
ou(x,t)]  OU.(p,1)

| Ot | ot
and _ ;
r ou(z,t) _ OUs(p, 1)
oot | ot
Remarks:

1. the Fourier cosine transform is useful when u,(0,t) is defined in the problem.

19



2. the Fourier sine transform is useful when (0, ) is defined in the problem.

Example

Consider the diffusion equation (heat equation)

ur(z,t) — kge(z,t) = 0, 0 <z <oo0, t>0
I.C. u(z,0) = f(z), 0<z<oo, t>0
B.C. u(0,t) = g(t), t>0.

Solution

We choose the Fourier sine transform in x since the temperature at = = 0, u(0,t) = g(t)
is provided. Taking the Fourier sine transform of the PDE with respect to the x variable,

we obtain
aUs(:th) \/5 2 _
aUs(M?ﬂ 2 \/5 _

aUs(M’t) 2 . \/?
e TR Us(u) = —kug(t)

Solving the ODE above, we obtain

2
Udp,t) = \/;ku’“ / g(t)ertdt + A(u)e et

9 t
= \/jk;,u/ g(T)e M) dr 4 A(p)e P
™ 0

setting t = 0, we obtain

Uu(,0) = () = Fu(p)
t
= Us(u7t) = FS(M)G_kHQt—f— \/zk‘/i\/ g(T)@_k“2(t_7') dr
™ 0

and the solution is the inverse sine transform of Ug(u,t). The inversion formula of
Us(p,t) yields the solution u(z,t) as

2 o0
u(z,t) = \/;/ Us(p, t) sin px dp
0

2 o) 2 0 t
= \/j/ Fs(u)e_k“Qt sin px dp + —k:/ / ,ug(T)e_k“Q(t_T) sin px dp drt
T Jo T Jo Jo

2 o] 00 9 t 00
= —/ / f(s)e’k“% sin ps sin px du ds + —k/ / ug(T)e’k“Q(t’T) sin px dp dr,
mTJo Jo T Jo Jo

which is the integral representation of the solution u(z,t) in terms of the data u(z,0) =
f(x) and u(0,t) = g(t).
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