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Abstract

This study presents an examination of three finite difference methods for pricing

American options. The methods considered are the forward difference (explicit),

backward difference (implicit), and Crank-Nicolson schemes. We apply these meth-

ods to solve the transformed Black-Scholes partial differential equations and price

American options under different scenarios.

We examine the effectiveness of the methods in capturing the free boundary problem

and examine their accuracy and efficiency in pricing options. We also examine the

impact of different parameters such as volatility and interest rate on option prices

and demonstrate how the methods perform under varying conditions.

The results show that the Crank-Nicolson scheme provides the most accurate option

prices, while the explicit scheme is the fastest method. The findings of this study pro-

vide important insights for investors and financial analysts in selecting appropriate

numerical methods for valuing American options.
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Chapter 1

Introduction

The significance of financial derivatives has grown in the realm of finance. These

are financial instruments whose value is based on or derived from other underlying

variables. For instance, a stock option is a derivative whose value is linked to the

stock price. The emergence of derivative markets in the modern economy has led

to the trading of various options by investors. The research paper will center on

American Options, which are a specific type of options.

1.1 Background

Options are financial contracts that allow the holder to buy (Call Option) or sell (Put

Option) an asset at an agreed-upon price in the future, without the obligation to do

so. Call Options gives the holder the right but not obligation to buy an underlying

asset whereas Put Options gives the holder the right but not obligation to sell an

underlying asset. Options can be obtained through purchase, compensation, or as

part of a complex financial deal, and they are considered assets that have a value

based on various factors such as the underlying asset price, time until expiration,

market volatility, risk-free interest rate, and strike price. The financial markets offer

a variety of option contracts, including European options, American options, Asian

options and many more. The names of these options are not regional or based on

their origin, but rather describe different styles of exercising options. A European op-

tion holder can only exercise it on the expiration date, whereas an American option

holder can exercise the contract at any time before the expiration date. An Asian op-

tion is distinct in that it is priced using the underlying asset’s prior price fluctuations.

Options are a commonly employed financial tool by investors for purposes of both

hedging and speculation, because of this, option valuation is a critical topic in finan-

cial engineering. Hedgers use options to reduce risk by buying or selling commodities
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at favorable prices. Speculators uses options to gain leverage and increase profits.

European options are easy to value since the exercise boundary is fixed on the expira-

tion date, their value can be easily calculated using the famous Black-Scholes (1973)

model. American options, on the other hand, have a built-in opportunity for traders

to receive a larger reward due to their flexible execution window. As a result, they

control the majority of the major financial markets’ option contracts. However, be-

cause of their early-exercise characteristic, the Black–Scholes model results in a free

boundary value, as a result closed form solutions cannot be found and formulas for

the exact solutions are too complex to be practically usable. Thus for this reason,

it is essential to find a good approximation to the option price, the major research

on this paper will focus on presenting efficient and accurate numerical algorithms for

valuation of American options.

1.1.1 European Options

The European Call option is a financial contract that outlines an agreement be-

tween two parties, specifying the conditions for the option holder to purchase a pre-

determined asset, known as the underlying, on a specific future date, called the ex-

piration date, at a predetermined price, known as the exercise or strike price. It is

important to note that the holder of the Call option has the right but not the obli-

gation to exercise the contract.

Valuation is a crucial aspect of options trading, and the European call option’s value

is determined by several factors. These factors include the exercise price, represented

by E, and the underlying asset price at the expiration date, represented by S(T). If

the underlying asset price at expiry, S(T), is greater than the exercise price, E, the

call option holder can buy the asset for E and sell it immediately in the market for

S(T), resulting in a profit of S(T) - E. However, if E is greater than S(T), the option

holder does not gain anything. Thus, the value of a European call option can be

calculated using a formula that takes into account these factors which is given below.

C(S, T ) = max (S(T )− E, 0) (1.1.1)
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A European Put Option is a financial contract that specifies the terms for the

option holder to sell a predetermined asset, referred to as the underlying, at a pre-

determined exercise or strike price on a specific future date, known as the expiration

date. It is important to note that this contract is only valid until the expiration date

and will expire thereafter.

A European Put Option is valued based on the exercise price, represented by E,

and the underlying asset price at the expiration date, represented by S(T). If the

asset price at expiry, S(T), falls below the exercise price, E, the option holder can sell

the asset at the predetermined price, E, and immediately purchase it in the market

for S(T), resulting in a profit of E-S(T). However, if E is less than S(T), the option

holder does not make a profit. Therefore, the value of a European Put Option can

be calculated using a formula that considers these factors given as.

P (S, T ) = max(E − S(T ), 0) (1.1.2)

Valuing European options is simple since the exercise border is defined at the expiry

date, represented as T. Analytic solutions for non-dividend-paying European options

can be derived using the option pricing models proposed by Black-Scholes (1973).

1.1.2 American Options

An American Option is a financial instrument that grants the holder the right, but

not the obligation, to buy (Call Option) or sell (Put Option) a specified asset from the

writer at a predetermined price (E) at any time between the start date and a specified

expiration date (T) in the future. Unlike European Options, American options allow

the holder to exercise the option at any time before the expiration date, providing

additional rights that can potentially increase their value. However, the absence of

a fixed exercise boundary in American options makes it challenging to determine

the optimal time to exercise the option, resulting in a free boundary problem that

requires careful modeling of the option price. These factors form the basis of research

on American options.
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1.2 The Statement of the Problem

The free boundary issues are extremely non-linear models because the free boundaries

are unknown in advance and must be specified as part of the solution. For the

reasons described above, and since solving these practical difficulties is frequently

exceedingly difficult, studies on these topics have continually drawn the interest of

researchers in all aspects. The American option pricing model belongs to the class

of free boundary problems, which are exhausting and difficult to solve. Although

several effective numerical approaches can achieve some solutions, it is well known

that it is difficult to manage the precision and stability, as they are substantially

impacted by the singularity at the exercise boundary approaching expiration. The

front-tracking technique and the front-fixing method are the two basic strategies

for dealing with the free boundary challenges. The front-tracking techniques track

the free boundary’s location over time. The Landau transformation is used in the

front-fixing approach to immobilize the ideal stopping border. Accurate valuation of

American options is a tough problem due to the potential of early exercise, and the

success of a numerical method for addressing the American problem is heavily reliant

on its ability to precisely pinpoint the optimal exercise border. In this research,

we present some fresh insights on the performance of the suggested strategy in order

to carefully and precisely solve the obstacles mentioned above on the path to enhance

accuracy in the American option problem.

1.3 Aim

The aim of this dissertation is to determine a reliable technique for American options

valuation.

1.4 Objectives

The following are the objectives of this dissertation.

� To develop a precise method that can determine the position of the free bound-

ary and also calculate the corresponding option valuation at discrete time in-

tervals leading up to the expiry date.
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� To transform the Black-Scholes equation into a parabolic equation without di-

mensions, and subsequently applying numerical methods to discretise the prob-

lem and solve for a solution.
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Chapter 2

Literature Review

In 1973, Merton stated valuation of the American options as a free boundary problem

via the Black–Scholes partial differential equation framework. Then, several analyti-

cal and numerical approaches were developed to solve the American options as a free

boundary problem. For an analytical approach, Geske and Johnson (1984) presented

a valuation formula for the American put option using the Richardson extrapolation

approximation. This formula evaluation process yields a polynomial expression that

is identical to the polynomial expression used to evaluate the integral terms in the

Black-Scholes for European put option formula. For pricing American put options,

P. Carr, R. Jarrow, and R. Myneni introduced a unique quasi-analytical approxima-

tion method in 1992. By dividing the option value into the European put price and

the early exercise premium, this approach offers a number of advantages, including

better understanding, more effective numerical evaluation, tighter analytical bounds,

and the potential for creating new analytical approximations. MacMillan (1986)

and Barone-Adesi and Whaley (1987) made significant advancements in the field of

American option pricing by devising analytical approximations that are widely ac-

knowledged. They adopted the quadratic approximation method in determining the

American Put and American call Value. S. P Zhu (2006) proposed a mathematical

formula that utilizes analytical approximations to estimate the optimal exercise price

of the American put option using the Laplace transformation. A Laplace transform

approximation of the moving boundary conditions was used to solve the Black-Scholes

equation in Laplace space and arrive at the formula. The resultant equation showed

that the ideal exercise price, which is a major obstacle in pricing American options,

is made up of the perpetual optimal exercise price plus a declining early exercise

premium dependent on the amount of time left before option expiry. Additionally, a

mathematical formula was developed to determine the cost of American put options.

Similar to the cumulative distribution function of the common normal distribution
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used in the pricing of European options, this formula indicates a time-independent

perpetual upper limit, lowered by an early exercise cost (a negative premium) that

may be stated by a straightforward integration.

Due to complications in obtaining the analytical solution of these problems, vari-

ous numerical algorithms have been proposed by many researchers. Firstly, Brennan

and Schwartz (1977) and Schwartz (1978) used explicit and implicit finite differences

for solving the American option problems. After those research, other writers of-

fered a variety of finite difference-based solution techniques for the option dynamic

pricing. Muthuraman (2006) presented a shifting boundary approach for generating

the optimal exercise price at each time point in an approximate manner. The tech-

nique is essentially iterative and entails establishing an initial boundary that is less

expensive than the optimal exercise price, then revising the boundary in accordance

with the no-arbitrage principle. It has been demonstrated that using this strategy

yields convergent updated limits that monotonically approach the boundary of the

ideal exercise, turning the moving boundary problem into a string of fixed boundary

issues. This approach has the capacity to greatly cut computation time since it only

needs a small number of iterations to achieve the necessary level of convergence.

2.1 The Factors Influencing the Valuation of Options

Stock option pricing is influenced by six key factors:

1. The prevailing stock price (S(0))and the strike price (E). In the case

of a future call option execution, the payment received is contingent on the

differential between the stock price and the strike price. Consequently, call

options become increasingly attractive as the stock price rises, but less desirable

as the strike price escalates. Conversely, put options operate in an opposite

manner to call options, as their payout is predicated on the disparity between

the strike price and the stock price. Thus, put options decrease in value when

the stock price increases, but appreciate in value as the strike price rises.

2. The time to expiration (T). Consider the following impact of the expiration

date. As the time to expiry approaches, both put and call American options
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become more valued. Consider only two alternatives in terms of the expira-

tion date. The possessor of a long-dated option benefits from a wider range

of exercise possibilities compared to the owner of a short-dated option. Conse-

quently, the long-dated option should always be valued at a minimum equal to

the short-dated option

3. The variability of the stock price. Volatility of stock price reflects the

uncertainty about future stock price fluctuations. When volatility rises, so is

the likelihood that the stock may perform well or poorly. For shareholders,

these two scenarios typically offset each other, resulting in little net effect.

However, this is not the case for call or put option holders. Call possessors

benefit from price increases while having limited downside risk in case of a price

drop, as their maximum loss is equivalent to the option’s price. Conversely, put

possessors profit from price declines while having no risk if prices rise. In times

of increased volatility, the value of both calls and puts tends to appreciate.

4. Free interest rate, r . The risk-free interest rate influences option pricing by

raising investors’ projected stock returns while diminishing the present value of

any earnings received by the option owner. This causes put option values to fall

while call option values to rise. In actuality, however, a rise or drop in interest

rates may have an influence on stock prices, resulting in a net effect that might

reduce the value of a call option while increasing the value of a put option amid

an interest rate increase and corresponding stock price fall. A fall in interest

rates and an increase in stock prices, on the other hand, might enhance the

value of a call option while decreasing the value of a put option.

5. The expected dividends over the course of the option’s life. Dividends

can cause a drop in the stock price on the ex-dividend date, which has ramifica-

tions for option values. Call option values, in particular, tend to fall while put

option values rise. As a result, the value of a call option is negatively related

to the amount of expected dividends, but the value of a put option is positively

related to the size of projected payouts.
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2.2 Model for Stock Prices

To accurately price options, we need to establish an analytical framework that depicts

the behaviour of the underlying stock. The stock price reflects the level of investor

confidence, which is subject to random fluctuations according to the efficient market

hypothesis. In other words, this theory posits that there is no systematic pattern or

predictability in the movements of stock prices that is :

� The current price fully incorporates all past information, but it does not take

into account any additional information beyond that.

� The market efficiently responds to any fresh information related to the stock.

Assuming the two conditions mentioned above, stock prices are regarded to be gov-

erned by a Markov process. A Markov process is a stochastic process where the

probability distribution of the next state depends solely on the current state, and

not on any previous states. In other words, the future behaviour of the process is

independent of its history, given the current state.

Let S be the stock price at time t, and consider a subsequent time interval dt during

which S changes to S + dS. We can decompose the resulting return into two compo-

nents: a deterministic component that resembles the return on a risk-free investment,

and a stochastic component that captures the variability in the stock’s return. The

deterministic component contributes dS
S

to the overall return and is given by

µdt (2.2.1)

The parameter µ in this context refers to the average upward movement in stock

prices, which is sometimes called the drift.

The second component that contributes to dS
S

reflects the random change in the

stock price due to external factors. This component is modelled as a random sample

drawn from a normal distribution with a mean of zero, which captures the stochastic

nature of the stock’s behaviour. The contribution of this component is given by:

σdX (2.2.2)
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σ represents the degree of variability in the stock’s returns, as measured by its volatil-

ity.

Thus combining expressions 2.2.1 and 2.2.2 contributions we get

dS

S
= σdX + µdt (2.2.3)

dX is a term used to describe the stochastic element of asset prices, which is a

fundamental component of the Wiener process, the basic mathematical model for

generating stock prices and has the following properties.

� dX follows a normal distribution,

� The expected value of dX is zero, while its variance is equal to dt.

2.3 Concept of Arbitrage

Arbitrage is a financial strategy that involves exploiting pricing discrepancies between

two or more markets. This is done by executing a combination of matching deals

that capitalize on the imbalance. The outcome is a profit that is commensurate with

the difference in market prices. Arbitrage transactions involve no cash inflows or

outflows in any probabilistic or temporal state, except for one state that generates

a positive cash flow. Essentially, arbitrage presents the opportunity for a risk-free

profit after transaction costs. Arbitrage in the context of American options refers to

the process of making a free of risk gain by taking advantage of price discrepancies

between different markets for the same underlying asset. In the case of American

options, which permit the exercise of the option by the holder at any time prior to

the option’s expiration date, arbitrage opportunities can arise when the price of the

option in one market is mispriced relative to the price of the same option in another

market. Traders can buy the underpriced option in one market and simultaneously

sell the overpriced option in another market, locking in a profit without taking on

any risk. However, arbitrage opportunities in financial markets are typically short-

lived, as market participants quickly move to take advantage of them, which tends
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to correct the price discrepancies. There are several several types of arbitrages, the

following are some of arbitrage opportunities that may occur:

1. Conversion arbitrage: This type of arbitrage involves buying a call option,

selling a put option, and buying the underlying asset at the same time. If the

option prices are not consistent with the underlying asset price, an arbitrage

opportunity may exist.

2. Reversal arbitrage: This type of arbitrage involves buying a put option,

selling a call option, and selling the underlying asset at once. If the option prices

are not consistent with the underlying asset price, an arbitrage opportunity may

exist.

3. Box spread arbitrage: This type of arbitrage involves buying a bull call

spread (A call option with a reduced strike price and a call option with an

elevated strike price) and selling a bear put spread (A put option with a reduced

strike price and a put option with an elevated strike price) at the same time. If

the option prices are not consistent with the underlying asset price, an arbitrage

opportunity may exist.

4. Dividend arbitrage: This type of arbitrage involves buying a stock that pays

a dividend and selling a call option on that stock. If the option prices are not

consistent with the dividend payments, an arbitrage opportunity may exist.

5. Early exercise arbitrage: This type of arbitrage involves exercising an Amer-

ican option early when it is profitable to do so. If the option holder has perfect

information and can exercise the option at any time, an arbitrage opportunity

may exist.

Arbitrage is an important concept in finance because it helps to ensure that prices

remain efficient and that market participants have access to the same information. By

taking advantage of price discrepancies, arbitrageurs help to align prices and reduce

the chances of market inefficiencies.
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2.4 The Black Scholes Model

The Black-Scholes formula constitutes the initial stage of option pricing where adap-

tations of the valuation of American options will be based on. The derivation of this

partial differential equation is based on the risk neutral valuation principle which can

be summarized as follows

� The writer of a call hedges his position or exposure by holding a number of

units of the underlying asset in order to create a riskless portfolio.

� When an efficient market exists with no chance of arbitrage, a portfolio that

is free of risk must produce a return that corresponds to the risk-free interest

rate.

2.4.1 Assumptions

The following assumptions are adopted in the derivation of the Black Scholes Pricing

Model

1. Trading occurs continually throughout time.

2. The risk-free interest rate (r) remains constant and traceable throughout the

option’s lifetime

3. There are no dividend disbursements from the underlying asset.

4. The market is devoid of all frictions, including taxes and commissions.

5. The assets are infinitely divisible.

6. Short selling is permissible.

7. The market is free from arbitrage opportunities.

Now to derive the formula, three assets are said to be available in the market and

these are

1. riskless bond/bank account whose unit value A(t) = At at time tis driven by

the equation

dA(t) = rA(t)dt
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2. Risky asset/stock whose unit price S(t) = St = S at time t satisfies the equation

dSt = µStdt+ σStdBt

where µ and σ are constants and Bt is a 1-dimensional Brownian Motion.

3. European call option written over the stock price C = C(t, St)

Consider a portfolio which involves writing a European call option and buying ∆

units of the stock. The value Π(t) = Π of the portfolio at time t is given by

Π(t) = C −∆St (2.4.4)

Since both Π(t) and Π are Ito processes they can be differentiated as follows.

dC =
∂C

∂t
dt+

∂C

∂S
dS +

1

2

∂2C

∂S2
(dS)2

=
∂C

∂t
dt+

∂C

∂S
(µStdt+ σStdBt) +

1

2

∂2C

∂S2
(µStdt+ σStdBt)

2

=
∂C

∂t
dt+

∂C

∂S
(µStdt+ σStdBt) +

1

2

∂2C

∂S2
σ2S2

t dt

=

(
∂C

∂t
+ µSt

∂C

∂S
+

1

2

∂2C

∂S2
σ2S2

t

)
dt+ (σSt)

∂C

∂S
dBt (2.4.5)

Now since the Π = C −∆S

dΠ = dC −∆dS

=
∂C

∂t
+ µSt

∂C

∂S
+

1

2

∂2C

∂S2
σ2S2

t )dt+ (σSt)
∂C

∂S
dBt −∆(µStdt+ σStdBt)

= (
∂C

∂t
+ µSt

∂C

∂S
+

1

2

∂2C

∂S2
σ2S2

t −∆µSt)dt+ (σSt
∂C

∂S
−∆σSt)dBt

= (
∂C

∂t
+

1

2

∂2C

∂S2
σ2S2

t ) + (
∂C

∂S
−∆)µSt)dt+ (

∂C

∂S
−∆)σStdBt (2.4.6)
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The idea behind the Black Scholes analysis is to construct a riskless portfolio in the

underlying asset and the option. In order to achieve this we choose ∆ = ∂C
∂S

and by

doing so

dΠ = (
∂C

∂t
+

1

2

∂2C

∂S2
σ2S2

t )dt (2.4.7)

Now since Π(t) is a riskless portfolio it must earn riskless interest since they are no

arbitrages in the economy. It follows that Π(t) satisfies the equation

dΠ = rΠ(t)dt

= r(c−∆S)dt

= (rC − rS
∂C

∂S
)dt (2.4.8)

Now comparing the two equations (2.49) and (2.4.10)we get

∂C

∂t
+

1

2

∂2C

∂S2
σ2S2

t = rC − rS
∂C

∂S

which can be rearranged to

∂C

∂t
+

1

2

∂2C

∂S2
σ2S2

t + rS
∂C

∂S
− rC = 0 (2.4.9)

which Black-Scholes partial differential equation and describes how European call

options react to changes in the underlying asset price and time. As a result, any

derivative security that is paid in advance and whose price is decided purely by S and

t must follow the equation.

2.4.2 Boundary Conditions

The partial differential equation that was generated above is a backward parabolic

equation. As a result, boundary conditions must be set in order to guarantee a
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unique outcome. On S and t, two requirements are placed. Since the formulae apply

to European options, we begin by examining the boundary conditions for a Call

option. A European call option’s payout value is known with certainty at t = T :

C(S, T ) = max(S − E, 0)

The aforementioned condition is the ultimate requirement for the partial differential

equation when evaluating the call option. If S = 0 at the expiry date, the payoff is

zero, which implies that the option is valueless at S = 0 even if the time to expiration

is long. Therefore, at S = 0, we obtain:

C(0, t) = 0

As the stock price increases, the probability of it being exercised rises, and the sig-

nificance of the exercise’s magnitude declines. Hence, as S → ∞, the option’s value

approaches that of the underlying asset, and we represent it as follows:

C(S, t) ∼ S as S → ∞

Thus for options without possibility of early exercise the above conditions can be

solved to give the Black-Scholes value for call options.

Similarly for put option final condition is the payoff:

P (S, T ) = max(E − S, 0)

If S equals zero, it must remain at zero. Under these circumstances, the final payoff

for the put is a fixed value of E. To determine P (0, t) we compute the present value

of E received at time T . Assuming constant interest rates, the boundary condition

at S = 0 is:

P (0, t) = Ee−r(T−t)

As S→ ∞ the option is unlikely to be exercised and so

P (S, t) → 0 as S → ∞

2.4.3 The Extensions of the Model

The preceding section concluded the Black-Scholes analysis of the fundamental Eu-

ropean call and put options. Although the derived formula may be helpful, it may
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not be sufficient for more complex scenarios. The model assumed that no dividends

are distributed. However, when assets pay dividends to their shareholders, the option

price of an underlying asset is affected by these payments, as discussed in section 2.1.

Therefore, an extension is necessary for the Black-Scholes partial differential equa-

tion to incorporate dividends. When taking dividends into account, the following

questions are addressed:

� What is the timing and frequency of dividend disbursements?

� What is the magnitude of the dividend payments?

Either a deterministic or stochastic model can be used to describe the dividend pay-

ment amount. In this project, we will only take into account the stocks that pay

dividends and whose time and amount are known at the beginning of the option life.

Let’s say the underlying asset distributes a dividend of DoSdt over a time period

dt, where Do is a constant amount. The stock price S and not time determines

whether the dividend is paid. The dividend yield, or percentage of asset price paid

out per unit of time, represented by the dividend DoSdt is constant and continuous.

It can be demonstrated that, when arbitrage is taken into account, in addition to

the typical swings, the asset price in each time-step dt must fall by the amount of the

dividend payout. The previously described random walk is now changed to become

ds = σSdX + (µ−Do)Sdt

Taking into account the impact of dividend payments to the hedged portfolio, we get

an amount (DoSdt) for each asset held, and because we own (−∆) of the underlying,

the portfolio changes by an amount.

−DoS∆dt

Thus

dΠ = dC −∆dS −Do∆dt
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Thus using the same analysis from the previous section we obtain

∂C

∂t
+

1

2

∂2C

∂S2
σ2S2

t + (r −Do)S
∂C

∂S
− rC = 0 (2.4.10)

which is the Black Scholes formula with an extension of dividends. The only modifi-

cation made to the boundary conditions is

C(S, t) ∼ Se−Do(T−t) as S → ∞

This occurs because as S approaches infinity, the option’s value converges to that of

the asset price, without considering dividends.
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Chapter 3

The Model and Transformation

In Chapter 1, subsection 1.1.2 it was discussed that American options have an ad-

ditional that the option may be exercised at any time throughout the term of the

option. Thus the formula derived in section 2.3 do not necessarily work for American

type options. This thesis serves two purposes. The first goal is to create a price

formula exclusively for American-style options, and the second goal is to look at the

use of numerical techniques to value these choices.

3.1 Valuation Formula for American Options

There is a sizable range of underlying asset values S where the European put option’s

value is smaller than its corresponding reward function while an American option is

still in effect prior to expiry. If the option is exercised and S is within this range,

such that P (S, t) < max(E−S, 0), an arbitrage opportunity exists. We may execute

the option by selling the asset for E and making a risk-free profit of E − P − S by

first acquiring the asset on the market for S and the option at the same time for P .

This advantage is transient, though, since arbitrageurs’ demand would drive up the

option’s value. The early exercise of American options is therefore subject to certain

limitations, we must infer.

V (S, t) ⩾ max(S − E, 0)

In certain scenarios involving American options, it may be optimal for the option

holder to exercise their option at specific values of S. This is the case which differ-

entiate American options from the European options. As a result the Black Scholes

model fails to hold for the values of S on American options. In the case of American

options, it is required to ascertain not only their value but also to make a choice on

whether or not to exercise them for each distinct underlying asset value S.
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We can use the notation Sf (t) to refer to the exercise price that yields the high-

est value for the option. As mentioned earlier, the value of Sf (t) is not known in

advance, and we are also uncertain about where to apply the boundary conditions.

Hence, this problem is referred to as the free boundary problem. Thus valuation

of American options involves solving a free boundary problem which can be viewed as

the classical obstacle problem. The free boundary represents the optimal exercise

boundary, or a specific point at which it is most advantageous to exercise the op-

tion. The obstacle problem arises because the option holder bears the responsibility

of making the decision when to exercise the option, the optimal exercise time and

price depend on the underlying asset price and other market conditions.

3.1.1 The Obstacle Problem

Friedman (1982) and Wilmott (1995) described the free boundary problem as a classic

obstacle problem, which can be illustrated using the example of an elastic thread

crossing a smooth object fixed at positions A and B. The displacement of the string

is represented by u(x) and the height of the object by f(x), where the endpoints of the

string are represented by x = ±1. The challenge is to determine whether the string

lies above or on top of the object, while ensuring that the string and its slope are

continuous. However, the exact point where the string and the object make contact is

unknown. The free boundary problem involves identifying the contact region defined

by the points P (x = xP ) and Q(x = xQ). When the string is in contact with the

object, the contact region is characterized by a concave downward shape, where u = f

and u′′ < 0. On the other hand, when the string is above the object, u > f and u′′ = 0.

Moreover, it is assumed that.

f(±) < 0, f(x) > 0, for some,−1 < x < 1, f ′′ < 0 (3.1.1)
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h

Figure 3.1: The Classical Obstacle Problem.

To ensure that there is only one contact region, the obstacle problem requires the

identification of u(x) and the points P and Q such that:

u(−1) = 0, u(1) = 0

u′′ = 0,−1 < x < xP , xQ < x < 1

u(xP ) = f(xP ), u
′(xP ) = f ′(xP )

u(xP ) = f(xQ), u
′(xQ) = f ′(xQ)

u(x) = f(x), xP < x < xQ

(3.1.2)

A possible approach for solving this problem is to restate it as a linear complementary

problem, given by:

u′′ · (u− f) = 0,−u′′ ≥ 0, u− f ≥ 0 (3.1.3)

The constraints of the issue imply that u(−1) = u(1) = 0 and that u and u′ are

continuous. The free boundary points are not explicitly given in this formulation,

but are integrated implicitly via the restriction u ≥ f . To address the resultant issue,

a variety of numerical approaches might be used.

It can be demonstrated that American options are distinctively defined by a col-

lection of limitations that share many similarities with those of the obstacle problem.

The restrictions for American options consist of:

� ensure that the value of the option is either equal to or greater than its corre-

sponding payoff function
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� Instead of using the Black-Scholes equation, an inequality can be utilized.

� The option value to exhibit continuity as a function of the underlying asset

value S.

� Sustaining the continuity of the option delta (i.e., its slope) is crucial.

Given that there are two fundamental forms of options, namely the Put option and

the Call option, we will initially investigate the scenario of a Put option, followed by

the examination of the Call option.

3.1.2 American Put Option

Lets examine an American put option characterized by a value of P (S, t). As pre-

viously demonstrated, the exercise boundary for this option exists when S = Sf (t),

which indicates that the option should be exercised if S is less than Sf (t) and retained

otherwise. If we assume that Sf (t) is less than E and we have the payoff function

defined as follows:

P (S, T ) =

E − S if E − S > 0

0 if E − S ≤ 0
(3.1.4)

The gradient of the payoff function at the point of contact is −1. This is because since

Sf (t) represents the exercise boundary for the American put option, we know that

Sf (t) < E. Therefore, the maximum function (payoff function) evaluates to E − S

when S = Sf (t), and the gradient of this function at the point of contact is simply

the derivative of E − S with respect to S, which is −1. Hence, the gradient of the

maximum function of E − S is negative one at the point of contact.

The Black Scholes partial differential equation is derived from an arbitrage argument,

which is only partially applicable to American options. However, the relationship be-

tween arbitrage and the Black Scholes operator remains closely linked. The formula

now produces an inequality instead of an equation. The delta hedged portfolio is

established in the same manner as before, with the same delta selection. However, in

the case of American-style options, it may not be feasible to hold the option both long
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and short since there are instances when it is advantageous to exercise the option.

This implies that the option writer may be subject to exercise. Unlike European

options, American-style options do not yield a unique value for the portfolio’s return

using the arbitrage argument. Instead, it results in an inequality, which indicates

that the portfolio’s return cannot exceed that of the bank deposit. For American put

options, this inequality takes the following form:

∂P

∂S
+

1

2
σ2S2∂

2P

∂S2
+ rS

∂P

∂S
− rP ≤ 0 (3.1.5)

To summarize the American put option is expressed as a free boundary problem, with

0 ≤ S < Sf (t) being the optimal exercise region where,

P = E − S,
∂P

∂S
+

1

2
σ2S2∂

2P

∂S2
+ rS

∂P

∂S
− rP ≤ 0 (3.1.6)

and Sf (t) < S < ∞ being the early exercise suboptimal region where.

P > E − S,
∂P

∂S
+

1

2
σ2S2∂

2P

∂S2
+ rS

∂P

∂S
− rP = 0 (3.1.7)

The boundary conditions for S = Sf (t) are that P and its slope are continuous:

P (Sf (t), t) = max (E − Sf (t), 0) (3.1.8)
∂P

∂S
(Sf (t), t) = −1 (3.1.9)

We see them as one boundary condition for determining the option value on the free

boundary and another for determining the location of the free boundary. We need an

extra condition to determine Sf (t) because we don’t know where it is a priori. Arbi-

trage considerations show that P ’s gradient should be continuous, which provides us

with the additional condition we require.
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3.1.3 American Call Option

The following discussion pertains to certain analytical aspects of the American call

option. Recall that the value C which is a function of S and t of the call satisfies

∂C

∂t
+

1

2

∂2C

∂S2
σ2S2

t + rS
∂C

∂S
− rC = 0 (3.1.10)

when the exercise is not optimal . The payoff condition is

C(S, t) =

S − E if S − E > 0

0 if S − E ≤ 0

or

C(S, t) = max (S − E, 0)

Since the option is exercisable at any point in time, we invariably have.

C(S, t) ≥ max (S − E, 0)

In the event that an optimal exercise boundary exists, denoted by S = Sf (t), the

following holds true when S = Sf (t).

C(Sf (t), t) = Sf (t)− E (3.1.11)
∂C

∂S
(Sf (t, t)) = 1 (3.1.12)

If an optimal exercise boundary represented by S = Sf (t) exists, then the inequality

C(S, t) > max(S−E, 0) must hold true. This is because a straightforward calculation

reveals that max(S−E, 0) does not satisfy the Black-Scholes equation. As in the put

option it can be replaced by the inequality.

∂C

∂t
+

1

2

∂2C

∂S2
σ2S2

t + rS
∂C

∂S
− rC ≤ 0 (3.1.13)

equality only holds when C > max (S −E, 0). As in the case of the American put ,

the financial reason for this is that early exercise is optimal. The rationale for this is

that retaining the option would result in a lesser value than exercising it immediately

and depositing the monies in a bank.
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3.2 Model Transformation

To obtain the solutions obtained via numerical techniques for the free boundary prob-

lem posed by American options, we will endeavour to identify a transformation that

simplifies the problem to a fixed boundary problem, from which the free boundary

can be deduced later. In this thesis, we will examine the transformation method that

utilizes a linear complementarity formulation.

3.2.1 Linear Complementarity Formulation

In the context of solving free boundary problems posed by American options, the lin-

ear complementarity formulation can simplify the problem by transforming it into a

fixed boundary problem. This is achieved by introducing a complementary slackness

condition, which ensures that the solution satisfies both the original problem and

the transformed problem simultaneously. By using this approach, the free boundary

can be deduced from the solution of the fixed boundary problem, which is much eas-

ier to solve numerically. In the case of American-style options, the complementary

slackness condition takes the form of a variational inequality, which can be solved

using numerical methods. Once the variational inequality is solved, the optimal ex-

ercise boundary can be deduced from the solution of the fixed boundary problem.

Thus the solution to the variational inequality provides optimal stopping boundary

for the American-style option, which is the moving boundary that we are interested in.

In this study, we extend the comparison between the obstacle problem and the Black-

Scholes formulation of the free boundary problem for American options by demon-

strating that the latter can also be simplified to a linear complementarity problem.

To achieve this, we first convert the American put problem from its original (S, t)

variables to (x, r), where we substitute S = Sf (t) for x = xf (r). It is worth noting

that since Sf (t) < E, xf (r) < 0. The transformation is given by:
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x =
2

k + 1
log

(
S

E

)
− k − 1

k + 1
σ
√
t

(3.2.14)

r =
1

σ2

(
rf − q +

1

2
σ2

(
k − 1

k + 1

)2

t

)

Following a change of variables involving the exercise price (E), risk-free rate (rf ),

dividend yield (q), and volatility of the underlying asset (σ), a constant k is introduced

and the resulting transformed payoff function is expressed in a specific form.

P (S, T ) = g(x, r) = max (E − ekx, 0) = e−kr max (e
1
2
(k−1)x − e

1
2
(k+1)x, 0)(3.2.15)

This expression can be further simplified using the transformation for x and r given

above, which yields:

g(x, r) = e
1
2
(k+1)2r max (e

1
2
(k−1)x − e

1
2
(k+1)x, 0)

= e
1
2
(k+1)2r max (e

1
2
(k−1)x − e

1
2
(k+1)x, 0) (3.2.16)

This expression is equivalent to the obstacle function g(x, r) that appears in the linear

complementarity problem for the American put option. Specifically, we can write:

g(x, r) = e
1
2
(k+1)2r max(e

1
2
(k−1)x − e

1
2
(k+1)x, 0)

To put it differently, the obstacle function assumes a value equivalent to the disparity

between the exercise price and the converted asset price, but only if the converted

asset price does not exceed zero. When the converted asset price is greater than zero,

the obstacle function assumes a value of zero. This series of transformations enables

the Black-Scholes equation to be modified as:

∂u

∂r
=

∂2u

∂x2
for x > xf (r) (3.2.17)

u(x, r) = g(x, r) for x ≤ xf (r)

with the initial conditions

u(x, o) = g(x, r) = max(e
1
2
(k−1)x − e

1
2
(k+1)x, 0)
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and asymptotic behaviour

lim
x→∞

u(x, r) = 0

As x → −∞. We are in the region where early exercise is optimal and so u = g. we

also have the crucial constraint

u(x, r) ≥ e
1
2
(k+1)2r max(e

1
2
(k−1)x − e

1
2
(k+1)x, 0)

and the conditions that u and ∂u
∂x

are continuous at x = xf (t) of of which follow from

the corresponding conditions in the original problem. Given that we must confine

every numerical method within a finite mesh, it would be prudent to also confine

the problem within a finite interval. In essence, limiting the problem domain to a

finite interval aligns with the restrictions imposed by the finite mesh of the numerical

approach. This implies that the problem is being examined within the interval of

−x− < x < x+, where x− and x+ are sufficiently large. As a result, the boundary

condition is being enforced by the problem domain.

u(x+, r) = 0 u(−x−, r) = g(−x−, r)

Within the context of finance, it is common to approximate exact boundary condi-

tions by substituting small values of S and P = E − S with larger values. This

approximation typically leads to the expression P = 0

The obstacle and the American put problem satisfy constraints , suggests that the

latter might also have the a linear complementarity formulation. The option problem

is very similar to the obstacle problem, but with an obstacle which is time dependent

, that is the transformed payoff function g(x, r) we can now write(
∂u

∂r
− ∂2u

∂x2

)
· (u(x, r)− g(x, r)) = 0

∂u

∂r
− ∂2u

∂x2
≥ 0, (u(x.r)− g(x.r)) ≥ 0

with initial boundary conditions

u(x, 0) = g(x, 0)

u(−x−, r) = g(−x−), u(x+, r) = g(x+, r) = 0
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and the conditions that u(x, r) and ∂u
∂x
(x, r) are continuous. The two possibilities in

this formulation correspond to situations in which it is optimal to exercise the option

(u = g) and those in which it is not (u > g).

We now transform the American call with dividends problem from the original (S, t)

variables to (x, r), where x and r refer to the following transformation:

x = ln

(
S

E

)
r =

σ2

2
(T − t)

v(x, r) =
C

E

v = eαx+βru(x, r)

for −∞ < x < ∞, r > 0 where α = −1
2
(k′− 1), β = −1

4
(k′− 1)− k, k′ = r−d

σ2/2
and k =

r
σ2/2

. Multiplying v(x, r) by E gives us the the value of the option with respect to

variables S and t. Through this transformation , the Black Scholes equation becomes

∂u

∂r
=

∂2u

∂x2
, −∞ < x < ∞, r > 0

This pertains to a diffusion equation that is characterized by an accompanying initial

condition.

u(x, 0) = v(x, 0)eαx = max(e
1
2
(k′+1) − e

1
2
(k′−1)x, 0)

In the transformation given, it can be observed that the dividend component is not

explicitly present in the equation. Consequently, the challenge of determining the

optimal exercise boundary xf (r) and the corresponding u(x, r) for American call

options that include dividends is equivalent to solving the obstacle problem.

∂u

∂r
=

∂2u

∂x2
for x ≤ xf (r)

u(x, r) = g(x, r) for x > xf (r)

with boundary conditions

u(x, 0) = g(x, 0)
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lim
x→∞

u(x, r) = g(x, r)

lim
x→−∞

u(x, r) = 0

where

g(x, r) = e(
1
4
(k′−1)2+k)rmax(e

1
2
(k′+1) − e

1
2
(k′−1)x, 0) (3.2.18)

We also have the constraint

u(x, r) ≥ g(x, r) (3.2.19)

As we will be utilizing finite difference methods to obtain numerical solutions, we

will limit our analysis to a finite interval. Specifically, we will consider the interval

[x−, x+], where x− and x+ represent large negative and positive values, respectively.

Consequently, the boundary conditions for the problem are defined as follows:

u(x−, r) = 0, u(x+, r) = g(x+, r) (3.2.20)

Now rewriting in a linear complementary form , we obtain(
∂u

∂r
− ∂2u

∂x2

)
(u(x, r)− g(x, r)) = 0 (3.2.21)

with two constraints

∂u

∂r
− ∂2u

∂x2
≥ 0, u(x, r)− g(x, r) ≥ 0 (3.2.22)

with the initial condition u(x, r) = g(x, 0) and the boundary conditions

u(x−, r) = g(x−, r) = 0

u(x+, r) = g(x+, r) (3.2.23)

The transformation outlined above is advantageous as it simplifies the diffusion equa-

tion and reduces the complexity present in the Black-Scholes equation. It is easier

to obtain numerical solutions for the simplified diffusion equation and subsequently

convert them to numerical solutions for the Black-Scholes equation using a change of

variables, as opposed to directly solving the Black-Scholes equation. Therefore, our

strategy for determining the numerical value of American call options involves solving

the following equation:

∂u

∂r
− ∂2u

∂x2
= 0 (3.2.24)
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and make sure

u(x, r)− g(x, r) ≥ 0 (3.2.25)

3.3 Numerical Methods

The researcher aimed to address the challenge of solving the obstacle problem pre-

sented by American options using Finite Difference Methods. To achieve this, the

researcher utilized three different finite difference methods namely: the Forward Dif-

ference Method (also known as the Explicit method), the Backward Difference Method

(also known as the Implicit method), and the Crank Nicolson method. The purpose

of using these methods was to find a numerical solution to the obstacle problem,

which arises from the early exercise feature of American options. These numerical

schemes are created by discretising the continuous equation that describe the option’s

value over time and the underlying asset’s price. The resulting system of equations

is then solved using numerical methods, and the accuracy of the resulting estimates

is examined to determine the validity of each method. To implement and solve these

numerical schemes, the researcher used a programming language called Python and

its associated packages. Python is a popular language for scientific computing that

provides many tools and libraries for numerical analysis and optimization. With the

help of Python packages such as NumPy, SciPy, and QuantLib, the numerical schemes

can were efficiently implemented and solved.
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Chapter 4

Numerical Methods for American Options

In the previous chapter, a modified Black-Scholes formula was presented for valuing

American options. This formula was subsequently transformed into a diffusion equa-

tion, utilizing the linear complementarity transformation, which is suitable for numer-

ical methods. This chapter will focus on utilizing the finite difference method to solve

the valuation problem posed by the American options. The numerical techniques

used in this analysis will be rigorously examined, and a solution for the valuation

problem of American options will be derived and analysed.

4.1 Finite Difference Methods

Finite difference methods are a methodology for solving partial differential equations

and linear complementarity problems. They are a powerful and adaptable tool that

can yield accurate numerical solutions for all of the models discussed in this thesis

when utilized correctly. The main idea behind the finite difference approach is to use

Taylor series expansions of functions near the locations of interest to approximate

the partial derivatives in partial differential equations. This research will focus on

three types of Finite Difference Methods namely the Backward Difference Method ,

the Forward Difference Method and the Crank Nicolson Method.

In the preceding chapter, a method was presented for simplifying the free bound-

ary problem into a fixed problem that can be solved. This approach utilizes the

linear complementarity transformation, which enables the compact representation of

the American option valuation problem in linear transformation form. A significant

advantage of this approach is that the free boundary is not explicitly involved. By

solving the linear complementarity problem, the free boundary can be determined

using the condition that defines it. This approach is equally applicable in cases where

there are multiple boundaries or none at all. The free boundaries can be identified at
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the points where the first intersection of the function u(x, r) with the function g(x, r)

occurs.

4.2 The Forward Difference Method

The forward difference method is a numerical method used to approximate the deriva-

tives of a function at a particular point. It is a type of finite difference method, which

means that it approximates derivatives by using a finite difference approximation.

Specifically, the forward difference method approximates the derivative of a function

at a point by computing the slope of a line that passes through another point.

Now using a forward difference to approximate ∂u
∂r

and a second order central dif-

ference ∂2u
∂x2 . Thus we can rewrite the reduced form of the as

um+1 − um
n

δr
+O(δr) =

um
n+1 − 2um

n + um
n−1

(δx)2
+O((δx)2) (4.2.1)

Ignoring the terms of O(δr) and O((δx)2) ,we can rearrange the above equation to

give the difference equation

um+1
n = αum

n+1 + (1− 2α)um
n + αum

n−1 (4.2.2)

where α is given by α = δr/(δx)2. At the time step of m+ 1, we have the knowledge

of the values of um
n for all n. Therefore, we can calculate um+1

n explicitly using the

equation mentioned above. In order to meet the constraint of u(x, r) − g(x, r) ≥ 0,

the numerical scheme for the forward difference method can be represented as follows:

um+1
n = αum

n+1 + (1− 2α)um
n + αum

n−1 (4.2.3)

um+1
n = max(ym+1

n , gm+1
n )

The constraint ensures that the numerical solution obtained satisfies the physical con-

dition that the value of the option cannot be negative. This constraint is necessary

because the free boundary represents the boundary between the regions where the

option is either exercised or not exercised, and the value of the option is zero in the

region where it is not exercised. Therefore, the constraint ensures that the numerical

solution is physically meaningful and satisfies the desired properties of the option
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Figure 4.1: Forward Difference Discretization

valuation problem.

In order to obtain the outcomes of the forward difference method, a Python pro-

gram was employed to solve the finite difference scheme and estimate the value of the

American call option. The program establishes a matrix of stock prices and option

values, and then proceeds to calculate the option value at each time step using the

forward difference method. In the code, the early exercise boundary function is used

to determine the nodes in the stock price grid where early exercise would be optimal

at each time step. Specifically, the code uses the function to find the index of the

first stock price node in the grid that is greater than or equal to the early exercise

boundary at each time step. Figure 4.2 shows the results of the code. The output

was produced using parameters. Risk free interest rate r = 0.02 , Time to maturity

T = 1 ,Volatility σ = 0.15, Strike price E = 100, Number of time steps N = 50,

Number of time steps M = 1000, Smax = 300. Below is the graphical representation

of the valuation of American put option using forward difference method.
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Figure 4.2: Anerican Put Option Values (Forward Difference Method)

Figure 4.3: American Put Option (Forward Difference Method)

The graph indicates that the forward difference method value is approximately

the same as the theoretical value of American option. The forward difference method

is easy to implement and computationally efficient. However the forward difference

method can suffer from numerical instability when the step size is too large relative to

the function being differentiated. This can lead to oscillations or divergent behaviour

in the approximation, which can make it difficult to obtain accurate results. It also

suffers in the handling of early exercise condition.
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The stability of the system is a concern that arises from the above approach. It

can be observed that the system is stable when 0 < α ≤ 1
2
, while it becomes unstable

when α > 1
2
. As a result, there are stringent limitations on the size of the time steps

that can be employed.

4.3 The Backward Difference Method

The fully implicit method is another term used for the backward difference method.

This approach involves determining the solution at a specific time interval by utilizing

the solution values at the current and prior time intervals, with the time derivative

assessed at the subsequent time interval. The name ”backward” is given to this tech-

nique because the time derivative is computed at the later time interval, in contrast

to the forward difference method where it is computed at the current time interval.

If we apply the backward-difference approximation to ∂u/∂r and the central dif-

ference to ∂2u/∂x2, the resulting transformed equation can be expressed as follows.

um+1
n − um

n

δr
+O(δr) =

um+1
n+1 − 2um+1

n + um+1
n−1

(αx)2
+O((δx)2) (4.3.4)

Dropping the error terms we get

−αum+1
n−1 + (1 + 2α)um+1

n − αum+1
n+1 = Um

n (4.3.5)

The reason why the implicit method is named as such is because the updated

values cannot be immediately separated and solved for explicitly in relation to the

old values. Therefore, an approximation of the linear complementarity problem is

utilized.

(−αum+1
n−1 + (1 + 2α)um+1

n − αum+1
n+1 − um

n ).(u
m+1
n − gm+1

n ) = 0 (4.3.6)

at time step m+ 1
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Figure 4.4: Backward Difference Discretization

Let

um =



um
N−+1

·
·
·

um
N+−1


, gm =



gmN−+1

·
·
·

gmN+−1


(4.3.7)

bm =



bmN−+1

·
·
·
bmo

·
·
·

bmN+−1



=



um−1
N−+1

·
·
·
um
o

·
·
·

um−1
N+−1



+ α



gmN−+1

0

·
·
·
0

gmN+


(4.3.8)
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and the coefficient matrix

C =



(1 + α) −α 0 . . . 0

−α (1 + α) −α . . .
...

0 −α
. . . . . . 0

...
. . . . . . (1 + α) −α

0 . . . 0 −α (1 + α)


(4.3.9)

Thus we want to solve the following constrained matrix problem

Cum+1 = bm+1 (4.3.10)

In order to ensure that the inequality u ≥ g is satisfied, we need to check if it is being

met. It is worth noting that the Gerschgorin theorem (Varga 1962) establishes the

invertibility of matrix C, which indicates that a solution to the equation exists.

The given all procedures of backward difference method are being implemented in

Python to address the American call option valuation problem. The backward differ-

ence method is utilized in the code for this purpose. To decide if it is advantageous to

exercise the option at an early stage, the early exercise boundary function is defined.

The solution update step is altered to compare the solution values inside the bound-

ary with the early exercise boundary, and select the larger value. The solution vector

at each time step is then trimmed at the index corresponding to the first underlying

asset price value that is equal to or greater than the early exercise boundary. This

ensures that the option is exercised early only when it is beneficial to do so. Below

is an matrix array showing the value of the American Call value solution.
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Figure 4.5: American Call Values (Backward Difference Method)

Figure 4:5 shows a python output, showing a valuation matrix after implementing

backward difference method with parameters: Risk free interest rate r = 0.05, Volatil-

ity σ = 0.2, Time to expiration T = 1 (one year), Strike price E = 100, Number of

time steps N = 200, Smax = 200, Number of price steps M = 1000

The rows of the matrix represent the spatial grid points, while the columns rep-

resent the time steps. Each element of the solution matrix represents the value of

the option at a particular spatial grid point and time step. For example, the element

U [i, j] represents the value of the option at the ith spatial grid point and jth time

step. The solution matrix can be used to visualize the evolution of the option price

over time and space. Figure 4.6 visualizes the solution values using a 3D surface plot,

where the x-axis represents time, the y-axis represents the stock price, and the z-axis

represents the option price. The plot is coloured using the cool warm colourman to

indicate the magnitude of the option price values. The resulting plot shows how the

option price changes over time and stock price, taking into account the possibility

of early exercise. The 3D surface plot shows the option value as a function of the

underlying asset price and time. The x-axis represents time, the y-axis represents the

underlying asset price, and the z-axis represents the option value. The surface plot
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Figure 4.6: American Call Option Value (Backward Difference Method)

is coloured according to a colour-map, with cool colours (e.g. blue) representing low

option values and warm colours (e.g. red) representing high option values.

A new code was created to examine whether the method is applicable to different

parameters. The focus of this code is to modify the time steps and price steps, which

are the primary contributors to fluctuations. The results indicated that the model

still produce the same results. Figure 4.7 shows the surface of American call solution

value implemented in python under parameters that: Risk free interest rate r = 0.075,

Volatility σ = 0.3, Strike price E = 1000, Number of price steps N = 300, Number of

time steps M = 2000, Smax = 3000, Time to maturity T = 2 years
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Figure 4.7: American Call Option Price(Backward Difference Method)

Increasing number of time steps M and number of price steps N seems to result

in a more accurate solution as indicated by the smoothness of the surface, because

it increases the spatial and temporal resolution of the solution. This results in a ac-

curate approximation of the early exercise boundary and the option value. However,

increasing M and N will also increase the computational cost of the solution, as the

size of the coefficient matrix and the number of iterations required in the fully implicit

method will both increase. Therefore, there is a trade-off between the accuracy of the

solution and the computational cost.

Now for American Put Option applying the backward difference method and solve

it using python code. The output of the code is the solution at maturity, which is a

vector of size (N + 1), where each element represents the American put option price

at a particular stock price. The optimal exercise strategy is implicitly included in

the solution, as the put option value is compared with the early exercise boundary at

each time step to determine whether to exercise the option early or not.
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Figure 4.8: American Put Option Value Matrix

The above matrix was produced with the following parameters, Risk free interest

rate r = 0.05, Volatility σ = 0.2, Strike price E = 1000, Time to maturity T = 0.5

( Six months) , Number of time steps M = 1000, Number of price steps N = 50,

Smax = 2000. Figure 4.9 shows a surface plot of the American put option value,

with the stock price and time to maturity on the x and y axes, respectively, and the

option value on the z axis. The plot shows how the value of the option changes with

changes in the underlying stock price and time to maturity, and correctly reflects

the expected behaviour of the put option value. This indicates that the method

accurately approximates the value of American put option.

Figure 4.9: American Put Option Value Surface
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4.4 The Crank Nicolson Method

The Crank-Nicolson Method provides an enhanced temporal convergence rate com-

pared to the backward difference method. Specifically, it improves the rate from O(δr)

to O((δ)2). To achieve this, the method employs a regular finite mesh on the (x, r)

plane and uses finite difference approximations to solve the linear complementarity

equations. The approach involves estimating expressions of the form ∂u
∂r

− ∂2u
∂x2 on the

mesh with step sizes of δr and δx, and truncating the values such that x is within

the range of N−δx and N+δx.

N−δx ≤ x = nδx ≤ N+δx

where N− and N+ are suitably large numbers. Now lets consider the Crank

-Nicolson method. We see that

∂u

∂r
(x, r +

δr

2
) =

um+1
n − um

n

δr
+O((δr)2)

and

∂u

∂r
(x, r +

δr

2
) =

1

2

(
um+1
n+1 − 2um+1

n + um+1
n−1

(δx)2

)
+

1

2

(
um
n+1 − 2um

n + um
n−1

(δx)2

)
+O((δr)2)

where um
n = u(nδx,mδr). Dropping terms of O((δr)2) and O((δx)2)the inequality

∂u
∂r

− ∂2u
∂x2 ≥ 0 is approximated by

um+1
n − 1

2
α(um+1

n+1 − 2um+1
n + um+1

n−1 ) ≥ um
n +

1

2
α(um

n+1 − 2um
n + um

n−1) (4.4.11)

where alpha is given by

α =
δr

(δx)2

we write

gmn = g(nδx,mδr) (4.4.12)

for the discretised payoff function. The condition u(x, r) ≥ g(x, r) is approximated

by

um
n ≥ gmn for m ≥ 1 (4.4.13)
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and the boundary and initial conditions imply that

um
N− = gmN− , , um

N+ = gmN+ , u0
n = g0n (4.4.14)

if we define Zm
n by

Zm
n = (1− α)um

n +
1

2
(um

n+1 + um
n−1) (4.4.15)

equation 4.2.2 then becomes

(1 + α)um+1
n − 1

2
α(um+1

n+1 + um+1
n−1 ) ≥ Zm

n (4.4.16)

Note that at time step (m+1)δr we can find Zm
n explicitly , since we know the values

of um
n . The linear complementarity condition that

(
∂u

∂r
− ∂2u

∂x2

)
· (u(x, r)− g(x, r)) = 0

is approximated by

(
(1 + α)um+1

n − 1

2
α(um+1

n+1 + um+1
n−1 − Zm

n )

)
(um+1

n − gm+1
n ) = 0 (4.4.17)

Now we formulate the finite difference approximations as a constrained matrix

problem and describe how the projected SOR method can be used to the problem.

Let um denote the vector representing the constraint at the same time.

um =



um
N−+1

·
·
·

um
N+−1


, gm =



gmN−+1

·
·
·

gmN+−1


(4.4.18)

and let the vector bm be given by
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bm =



bmN−+1

·
·
·
bmo

·
·
·

bmN+−1



=



Zm
N−+1

·
·
·

Zm
o

·
·
·

Zm
N+−1



+
1

2
α



gm+1
N−+1

0

·
·
·
0

gm+1
N+


(4.4.19)

where the quantities Zm
n are determined from equation 4.2.6 and the vector on the

extreme right end side of 4.3.10 includes the effects of the boundary conditions at

n = N− and n = N+. Thus we introduce tri-diagonal, symmetric matrix

C =



1 + α −1
2
α 0 . . . 0

−1
2
α 1 + α −1

2
α . . .

...

0 −1
2
α

. . . . . . 0
...

. . . . . . 1 + α −1
2
α

0 . . . 0 −1
2
α 1 + α


(4.4.20)

Thus we can rewrite our discrete approximation to the linear complementarity prob-

lem in matrix form as

Cum+1 ≥ bm , um+1 ≥ gm+1 (4.4.21)

(um+1 − gm+1) · (Cum+1 − bm) = 0

When using vectors a and b, we interpret the statement a ≥ b to mean that each

element of vector a is greater than or equal to its corresponding element in vector b,

i.e., an ≥ bn for all n. In the scheme’s time-stepping process, the vector bm contains

information from time step mδr that determines the value of vm+1 at time step

(m+ 1)δr. We can calculate bm at each time-step using the known values of vm. To

solve problem 4.3.12 at any time step, we can calculate gm for any mδr using the

modified form of SOR, known as the projected SOR.
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4.5 The Projected SOR

The SOR method can be slightly modified to suit a Crank-Nicolson finite difference

formulation of the problem, resulting in the projected SOR equations shown below.

These equations can be used to solve for Cum+1 = bm subject to the constraint that

um+1 ≥ gm+1 by iterating until um+1,k
n converge to um+1

n :

ym+1,k+1
n =

1

1 + α

(
bmn +

1

2
α(um+1,k+1

n−1 + um+1,k
n+1 )

)
(4.5.22)

um+1,k+1
n = um+1,k

n + w(ym+1,k+1
n − um+1,k

n )

To ensure the constraint of um+1 ≥ gm+1 is met, we need to modify the second equa-

tion accordingly.

A Python code was utilized to apply the Crank Nicolson method for resolving the

valuation of American Call Option. The code then constructs the coefficient matrix

for the Crank-Nicolson method and initializes the solution matrix. It uses a loop to

iterate through time steps and solve for the option value at each step. The loop uses

the Crank-Nicolson method to solve the problem, and includes a condition to enforce

the early exercise boundary. Finally, the code prints the option value at maturity.

An output generated by the code is presented in Figure 4.10.
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Figure 4.10: American Call option Value (Crank Nicolson Method)

The output of the code is the option value at maturity, which is a vector con-

taining the option value for each possible stock price. This output was produced

with parameters defined as: Initial stock price S0 = 50, Volatility σ = 0.2, Time to

maturity T = 1, Exercise price E = 50, Smin = 0 , Smax = 100, Number of price

steps N = 100, Number of time steps M = 100.

Now the same code was modified to solve for American put option. The modifications

made to the code include changing the payoff function to a put option, adjusting the

early exercise boundary function accordingly, and changing the initial and boundary

conditions to reflect the put option’s payoff structure. The results are presented in

figure 4.11
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Figure 4.11: American Put Option Values (The Crank Nicolson Method)

Figure 4.9 shows the output of an American put option produced parameters:

Initial stock price S0 = 50, Volatility σ = 0.2, Risk free interest rate r = 0.5, Time

to maturity T = 1, Exercise price E = 55, Smin = 0 , Smax = 100, Number of price

steps N = 100, Number of time steps M = 1000.

One of the observation discovered from Crank-Nicolson is that it can handle the vari-

able coefficient in the PDE that arises from the possibility of early exercise. Other

numerical methods, such as the explicit finite-difference method require a different

PDE to account for early exercise, which can be more complicated and computation-

ally expensive to solve.

4.6 The Determination of the Optimal Exercise Boundary for

American-style Options

In the previous section, we discussed three Finite Difference Methods, all of which

have algorithms designed to determine the early exercise boundary. This was one of

the main objectives of the thesis. In this section, we will provide a brief overview of
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how the early exercise boundary was incorporated into the difference scheme.

The Partial Differential Equation (PDE) that governs the option value was solved

using the Projected Successive Over Relaxation (PSOR) method. It should be noted

that this method does not offer direct insight into the positions of the early exercise

boundaries Sf (t). Nevertheless, the value of Sf (t) can be determined retrospectively

from the solution V (S, t).

Assuming that the solution V (S, t) is already known for t belonging to the inter-

val [0, T ], the objective is to determine the early exercise position Sf (t). For a call

option, Sf (t) represents the smallest value of S for which V (S, t) = S−E, indicating

that the intrinsic value of the option is equivalent to the payoff from immediate ex-

ercise. Conversely, for a put option, Sf (t) corresponds to the largest value of S such

that V (S, t) = E − S

To determine Sf (t) through numerical methods, a numerical approximation is uti-

lized to yield the values of the approximate solution at nodal points (Si, T − rj),

where Si = Eeih and rj = jk. Subsequently, the following algorithm is employed to

establish the location of the early exercise boundary:

For a call option:

Iterate over all nodal points (Si, T − rj). For each nodal point, check if |V (Si, T −
rj)− (Sj −E)| < ϵ, where ϵ is a prescribed tolerance level. If the condition in step 2

is satisfied, then set Sf (t) to Si.

For a put option:

Iterate over all nodal points (Si, T − rj). For each nodal point, check if |V (Si, T −
rj)− (E − Si)| < ϵ, where ϵ is a prescribed tolerance level. If the condition in step 2

is satisfied, then set Sf (t) to Si. In other words, we iterate over all nodal points and

look for the first point that satisfies the condition for the early exercise boundary.

The tolerance level ϵ controls the accuracy of the approximation.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusion

In conclusion this dissertation places particular emphasis on the pricing of American-

style options. Initially, efforts were directed towards deriving the Black-Scholes for-

mula based on a set of assumptions. It is worth noting that the formula gives a

solution to closed form options such as the European options. The formula was then

extended to fit the conditions of American options which permits the owner of option

to exercise the option at any time before the maturity date. It was observed that

American option valuation results in an inequality instead of an equation. The for-

mula postulates the free boundary problem which can be interpreted as the classical

obstacle problem. The analogue between the American option valuation problem and

the obstacle problem was then presented to formulate the Linear complementarity

transformation. This through change of variables reduces the problem into a fixed

boundary problem under which the free boundary problem can be inferred afterwards.

Due to the early exercise potential of American-style options, the exercise boundary

remains variable. Since there are no closed-form solutions available for solving the

inequality in the pricing function, numerical approximations were employed. Three

Finite difference schemes were studied, namely the forward difference method (Ex-

plicit method), backward difference method (implicit method), and Crank-Nicolson.

The backward difference method method is the easiest to program, but it may gen-

erate unstable results unless stability constraints are imposed. The implicit scheme,

on the other hand, is more challenging to program, but it provides stable results

regardless of the mesh density. Finally, the Crank-Nicolson method takes longer to

compute a bit more complicated to program but is the most accurate approach when

it is applied correctly as it combines the advantages of both the forward difference

and backward difference schemes.
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The research has demonstrated that finite difference methods offer an effective means

of computing option values, particularly for problems where closed-form solutions are

not available. However, it is important to consider the limitations and potential in-

stability of these methods, particularly when employing excessively large time steps.

5.2 Recommendations

Based on the research conducted on the valuation of American-style options using

finite difference methods, the following recommendations are suggested:

1. Refine the model assumptions: The accuracy and stability of finite differ-

ence methods can be improved by refining the assumptions used in the model.

Future research should focus on identifying and addressing any unrealistic as-

sumptions that may impact the accuracy of the results.

2. Enhance accuracy through adaptive mesh refinement: Adaptive mesh

refinement techniques can be used to improve the accuracy of finite difference

methods by refining the mesh density in areas where the solution is changing

rapidly. Future research should investigate the effectiveness of adaptive mesh

refinement for pricing American options.

3. Apply to finite difference other areas of finance: Finite difference meth-

ods have been widely used in finance for pricing mainly options, but there is a

need to apply these methods to other areas in finance where complex problems

are not easily solvable explicitly. Future research should focus on applying finite

difference methods to other problems, such as bond valuation and credit rsik

modelling.

In summary it is recommended that future research should focus on enhancing the

accuracy and stability of finite difference methods by exploring alternative numerical

techniques and refining the model assumptions. Additionally, it is suggested that

further investigation should be conducted into the application of these methods to
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more complex areas in finance such as those of credit risk modelling and bond val-

uation problems. Overall, the application of finite difference methods to American

option valuation presents a promising area for future research and can have significant

implications for the wider financial industry.
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Appendix A

A.1 Forward Difference Method Python Code

import numpy as np

# Define parameters

r = 0.02

sigma = 0.15

K = 100

T = 1

Smax = 300

N = 50

M = 1000

dt = T / M

ds = Smax / N

s = np.arange(0, Smax + ds, ds)

t = np.arange(0, T + dt, dt)

alpha = dt / (ds**2)

# Define the payoff function for a put option

def put_payoff(S, K):

return np.maximum(K - S, 0)

# Define the early exercise boundary function

def early_exercise_boundary(t, S, K, r, sigma):

return K - (S - K) * np.exp(-r * (T - t)) + sigma * np.sqrt(t) * np.sqrt(T

- t) *

np.sqrt(2 / np.pi)
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# Define the initial and boundary conditions

u = put_payoff(s, K)

u[0] = K

u[N] = 0

# Use the explicit difference method to solve the problem

for m in range(1, M + 1):

u[1:N] = (1 - 2*alpha)*u[1:N] + alpha*u[2:N+1] + alpha*u[0:N-1]

u[0] = K

u[N] = 0

u[:np.argmax(s >= early_exercise_boundary(t[m], s, K, r, sigma))] =

put_payoff(s[:np.argmax(s >= early_exercise_boundary(t[m], s, K, r,

sigma))], K)

# Print the solution at maturity

print(u)

A.2 Backward Difference Method Python Code

import numpy as np

# Define parameters

r = 0.075

sigma = 0.3

K = 1000

T = 1.5

Smax = 3000

N = 200

M = 2000
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dt = T / M

ds = Smax / N

s = np.arange(0, Smax + ds, ds)

t = np.arange(0, T + dt, dt)

alpha = dt / (ds**2)

# Define the payoff function for a call option

def call_payoff(S, K):

return np.maximum(S - K, 0)

# Define the early exercise boundary function

def early_exercise_boundary(t, S, K, r, sigma):

return K + (S - K) * np.exp(-r * (T - t)) - sigma * np.sqrt(t) *

np.sqrt(T - t) * np.sqrt(2 / np.pi)

# Define the initial and boundary conditions

u = call_payoff(s, K)

u[0] = 0

u[N] = Smax - K * np.exp(-r * T)

# Define the coefficient matrix

C = np.diag(1 + 2 * alpha * np.ones(N - 1)) - np.diag(alpha * np.ones(N

- 2), -1) - np.diag(alpha * np.ones(N - 2), 1)

# Define the solution matrix

U = np.zeros((N + 1, M + 1))

U[:, 0] = u

# Use the fully implicit method to solve the problem

for m in range(1, M + 1):

b = np.zeros(N - 1)

b[0] = alpha * (u[0] + u[1])
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b[-1] = alpha * (u[-1] + u[-2])

b = b + u[1:N] - alpha * call_payoff(s[1:N], K)

u_interior = np.linalg.solve(C, b)

u[1:N] = np.maximum(u_interior, call_payoff(s[1:N], K))

u[:np.argmax(s >= early_exercise_boundary(t[m], s, K, r, sigma))] =

call_payoff(s[:np.argmax(s >= early_exercise_boundary(t[m], s, K, r,

sigma))], K)

U[:, m] = u

# Print the solution at maturity

print(U[:, -1])

A.3 The Crank-Nicolson Method Python Code

import numpy as np

from scipy.stats import norm

# Define parameters

S0 = 50

K = 50

r = 0.05

sigma = 0.2

T = 1

Smin = 0

Smax = 100

N = 100

M = 1000

dt = T / M

ds = Smax / N

s = np.arange(Smin, Smax + ds, ds)

t = np.arange(0, T + dt, dt)

alpha = dt / (2*ds**2)
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# Define the payoff function for an American call option

def call_payoff(S, K):

return np.maximum(S - K, 0)

# Define the early exercise boundary function

def early_exercise_boundary(t, S, K, r, sigma):

d1 = (np.log(S/K) + (r + 0.5*sigma**2)*(T - t)) / (sigma*np.sqrt(T - t))

return S - K*np.exp(-r*(T - t))*norm.cdf(d1)

# Define the initial and boundary conditions

u = call_payoff(s, K)

u[0] = 0

u[N] = Smax - K*np.exp(-r*T)

# Define the coefficient matrix

C = np.diag(1 + alpha * np.ones(N - 1)) - 0.5 * alpha * np.diag(np.ones(N -

2), -1) - 0.5 * alpha * np.diag(np.ones(N - 2), 1)

D = np.diag(1 - alpha * np.ones(N - 1)) + 0.5 * alpha * np.diag(np.ones(N -

2), -1) + 0.5 * alpha * np.diag(np.ones(N - 2), 1)

# Define the solution matrix

U = np.zeros((N + 1, M + 1))

U[:, 0] = u

# Use the Crank-Nicolson method to solve the problem

for m in range(1, M + 1):

b = D.dot(u[1:N])

b[0] += 0.5*alpha*(2*u[1] + (r - 0.5*sigma**2)*ds*u[0])

b[-1] += 0.5*alpha*((r + 0.5*sigma**2)*ds*u[N] + 2*u[N-1])

u_interior = np.linalg.solve(C, b)

u[1:N] = np.maximum(u_interior, call_payoff(s[1:N], K))
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u[:np.argmax(s >= early_exercise_boundary(t[m], s, K, r, sigma))] =

call_payoff(s[:np.argmax(s >= early_exercise_boundary(t[m], s, K, r,

sigma))], K)

U[:, m] = u

# Print the option value at maturity

print(U[:, -1])

58


